查看“From dynamics to equilibrium”的源代码
←
From dynamics to equilibrium
跳到导航
跳到搜索
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看和复制此页面的源代码。
==Metropolis sampling== Given the parameters of the Ising model (<math>\textstyle\beta, \{J_{ij}\}</math>), one can use the Metropolis sampling (also called Glauber dynamics) to sample the Boltzmann distribution. To collect 'm' configurations that independently sampled from the Boltzmann distribution, the procedure is detailed below: * starting from an initial configuration <math>\textstyle\underline\sigma</math> (for example a random configuration); * for t = 1:m **for t'=1:T ***randomly select a spin, say 'i', set its value according to probability <math>\textstyle P(\sigma_i | \underline \sigma)=\frac{ e^{\beta\sigma_i\sum_jJ_{ij}\sigma_j}}{2\cosh\beta\sum_jJ_{ij}\sigma_j}</math> **end **record the current configuration. *end We can see that to collect 'm' configurations, totally 'mT' configurations are generated, where a ''large-enough'' constant 'T' is the relaxation time to make sure that configurations are sampled independently. ==Detailed balance and equilibrium== The configurations generated in the way described above form a Markov chain. So above procedure is usually called ''Markov Chain Monte Carlo (MCMC)'' simulation or ''Gibbs sampling''. We know that the system has an ''equilibrium'' if the Markov Chain is reversible, in physics it is called ''Detailed Balance''. That is for two consecutive configurations :<math>\underline\sigma=\{\sigma_1,\sigma_2,...,\sigma_i,...,\sigma_n\}</math> and :<math>\underline\sigma=\{\sigma_1,\sigma_2,...,-\sigma_i,...,\sigma_n\},</math> we ask :<math>P(\underline\sigma\to\underline s)P(\underline\sigma)=P(\underline s\to \underline\sigma)P(\underline s).</math> Next we are going to show the condition for the detailed balance and the result distribution associated with the equilibrium. First of all we see that the transition probabilities between two configurations are given by :<math>P(\underline\sigma\to\underline s)=\frac{ e^{-\beta\sigma_i\sum_jJ_{ij}\sigma_j}}{2\cosh\beta\sum_jJ_{ij}\sigma_j},</math> :<math>P(\underline s\to\underline \sigma)=\frac{ e^{\beta\sigma_i\sum_jJ_{ij}\sigma_j}}{2\cosh\beta\sum_jJ_{ij}\sigma_j}.</math> Then the condition for detailed balance is written as :<math>e^{-\beta\sigma_i\sum_jJ_{ij}\sigma_j}P(\underline\sigma)=e^{\beta\sigma_i\sum_jJ_{ij}\sigma_j}P(\underline s),</math> which implies that :<math>P(\underline\sigma)\propto e^{\frac{1}{2}\beta\sum_i\sum_jJ_{ij}\sigma_i\sigma_j}.</math> Inserting the last equation into the detailed-balance-condition gives :<math>e^{-\beta\sum_j\sigma_i\sigma_jJ_{ij}+\frac{1}{2}\beta\sum_j\sigma_i\sigma_jJ_{ij}+\frac{1}{2}\beta\sigma_i\sigma_jJ_{ji}}=e^{\beta\sum_j\sigma_i\sigma_jJ_{ij}-\frac{1}{2}\beta\sum_j\sigma_i\sigma_jJ_{ij}-\frac{1}{2}\beta\sigma_i\sigma_jJ_{ji}},</math> which evaluates to :<math>e^{\beta\sum_j\sigma_i\sigma_jJ_{ij}}=e^{\beta\sum_j\sigma_i\sigma_jJ_{ji}}.</math> So above condition can be satisfied iff :<math>J_{ij}=J_{ji}</math> :<math>J_{ii}=0</math> and the associated equilibrium distribution is Boltzmann distribution. ==相关wiki== *[[Ising模型]] *[[ISING模型的重正化]] *[[Ising模型与最大熵分布]] *[[From dynamics to equilibrium]] *[[Cavity method and belief Propagation for the Ising model]] [[Category:复杂系统]] [[category:旧词条迁移]]
返回至
From dynamics to equilibrium
。
导航菜单
个人工具
创建账户
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
链入页面
相关更改
特殊页面
页面信息