更改

跳到导航 跳到搜索
添加62字节 、 2020年7月14日 (二) 16:57
第224行: 第224行:  
2013年,SpringerOpen/BioMed Central 推出了一个开放的在线获取期刊平台,其主题就是关于'''复杂适应性系统建模(CASM)'''。
 
2013年,SpringerOpen/BioMed Central 推出了一个开放的在线获取期刊平台,其主题就是关于'''复杂适应性系统建模(CASM)'''。
   −
== Evolution of complexity ==
+
== 复杂性的演变 Evolution of complexity ==
    
[[File:Evolutionofcomplexity.png|thumb|300px|Passive versus active trends in the evolution of complexity. CAS at the beginning of the processes are colored red. Changes in the number of systems are shown by the height of the bars, with each set of graphs moving up in a time series.]]
 
[[File:Evolutionofcomplexity.png|thumb|300px|Passive versus active trends in the evolution of complexity. CAS at the beginning of the processes are colored red. Changes in the number of systems are shown by the height of the bars, with each set of graphs moving up in a time series.]]
第230行: 第230行:  
Passive versus active trends in the evolution of complexity. CAS at the beginning of the processes are colored red. Changes in the number of systems are shown by the height of the bars, with each set of graphs moving up in a time series.
 
Passive versus active trends in the evolution of complexity. CAS at the beginning of the processes are colored red. Changes in the number of systems are shown by the height of the bars, with each set of graphs moving up in a time series.
   −
复杂性演变中的消极趋势与积极趋势。在进程的开始时 CAS 是红色的。系统数量的变化由条形图的高度来表示,每一组图在一个时间序列中向上移动。
+
复杂性演变中的消极趋势与积极趋势如图所示。在进程的开始时整个CAS系统是红色的,系统数量的变化由条形图的高度来表示,每一组图在一个时间序列中向上移动。
      第242行: 第242行:  
Living organisms are complex adaptive systems. Although complexity is hard to quantify in biology, evolution has produced some remarkably complex organisms. This observation has led to the common misconception of evolution being progressive and leading towards what are viewed as "higher organisms".
 
Living organisms are complex adaptive systems. Although complexity is hard to quantify in biology, evolution has produced some remarkably complex organisms. This observation has led to the common misconception of evolution being progressive and leading towards what are viewed as "higher organisms".
   −
生命有机体是复杂的适应系统。虽然复杂性在生物学中难以量化,但进化已经产生了一些非常复杂的生物体。这一观察结果导致了一种普遍的错误观念,即进化是渐进的,并导致被视为“更高级的生物体”。
+
活生物体是复杂的适应系统。 尽管很难在生物学中量化复杂性,但进化确实产生了一些非常复杂的生物。这种现象导致对进化的普遍误解是”进化是渐进的,并产生了所谓的’高级生物‘“。
 
        第250行: 第249行:  
If this were generally true, evolution would possess an active trend towards complexity. As shown below, in this type of process the value of the most common amount of complexity would increase over time. Indeed, some artificial life simulations have suggested that the generation of CAS is an inescapable feature of evolution.
 
If this were generally true, evolution would possess an active trend towards complexity. As shown below, in this type of process the value of the most common amount of complexity would increase over time. Indeed, some artificial life simulations have suggested that the generation of CAS is an inescapable feature of evolution.
   −
如果这是普遍正确的,那么进化就会朝着复杂性的方向发展。如下所示,在这种类型的流程中,最常见的复杂性值会随着时间的推移而增加。事实上,一些人工生命模拟已经表明,CAS 的产生是进化过程中不可避免的特征。
+
假设这种说法是普遍正确的,那么进化就会朝着复杂性的方向发展。如下所示,在这种类型的流程中,最常见的复杂性值会随着时间的推移而增加。而事实上,一些人工生命模拟已经表明,CAS的产生是进化过程中不可避免的特征。
      第258行: 第257行:  
However, the idea of a general trend towards complexity in evolution can also be explained through a passive process. This involves an increase in variance but the most common value, the mode, does not change. Thus, the maximum level of complexity increases over time, but only as an indirect product of there being more organisms in total. This type of random process is also called a bounded random walk.
 
However, the idea of a general trend towards complexity in evolution can also be explained through a passive process. This involves an increase in variance but the most common value, the mode, does not change. Thus, the maximum level of complexity increases over time, but only as an indirect product of there being more organisms in total. This type of random process is also called a bounded random walk.
   −
然而,复杂性在进化中的普遍趋势的观点也可以通过一个被动的过程来解释。这涉及到方差的增加,但是最常见的值,模式,并没有改变。因此,复杂性的最大程度随着时间的推移而增加,但仅仅是总体上有更多生物体的间接产物。这种类型的随机过程也称为有界随机游动。
+
然而,复杂性在进化中的普遍趋势的观点也可以通过一个被动的过程来解释。这涉及到方差的增加,但是最常见的值(即模式),并没有改变。因此,复杂性的最大水平随着时间的推移而增加,但仅仅是总体上有更多生物体的间接产物。这种随机过程也称为'''有界随机游走(Bounded random walk)'''。
      第266行: 第265行:  
In this hypothesis, the apparent trend towards more complex organisms is an illusion resulting from concentrating on the small number of large, very complex organisms that inhabit the right-hand tail of the complexity distribution and ignoring simpler and much more common organisms. This passive model emphasizes that the overwhelming majority of species are microscopic prokaryotes, which comprise about half the world's biomass and constitute the vast majority of Earth's biodiversity. Therefore, simple life remains dominant on Earth, and complex life appears more diverse only because of sampling bias.
 
In this hypothesis, the apparent trend towards more complex organisms is an illusion resulting from concentrating on the small number of large, very complex organisms that inhabit the right-hand tail of the complexity distribution and ignoring simpler and much more common organisms. This passive model emphasizes that the overwhelming majority of species are microscopic prokaryotes, which comprise about half the world's biomass and constitute the vast majority of Earth's biodiversity. Therefore, simple life remains dominant on Earth, and complex life appears more diverse only because of sampling bias.
   −
在这一假设中,向更复杂的生物体发展的明显趋势是一种错觉,因为它只注意居住在复杂性分布的右端的少数大型、非常复杂的生物体,而忽略了更简单和更普通的生物体。这个被动模型强调,绝大多数物种是微小的原核生物,它们构成了世界生物量的一半,构成了地球生物多样性的绝大多数。因此,简单生命在地球上仍然占主导地位,而复杂生命仅仅因为抽样偏差而显得更加多样化。
+
在这一假设中,向更复杂的生物体发展的明显趋势是一种错觉,因为它只注意居住在复杂性分布的右端的少数大型、非常复杂的生物体,而忽略了更简单和更普通的生物体。这个被动模型强调,绝大多数物种是微小的原核生物,它们构成了世界生物量的一半,构成了地球生物多样性的绝大多数。因此,简单生命在地球上仍然占主导地位,而复杂生命仅仅因为抽样的偏差而显得更加多样化。
     
463

个编辑

导航菜单