更改

跳到导航 跳到搜索
添加359字节 、 2020年7月16日 (四) 20:18
无编辑摘要
第112行: 第112行:     
这种情况下的一般过程可能包括周围环境对系统所做的功,这是因为在系统内部会产生摩擦或粘滞效应,此时是由于化学反应可能正在进行,或热传递实际上是不可逆地发生,通过系统温度<math>T</math>和周围环境温度<math>T_surr</math>之间存在差异而进行驱动。
 
这种情况下的一般过程可能包括周围环境对系统所做的功,这是因为在系统内部会产生摩擦或粘滞效应,此时是由于化学反应可能正在进行,或热传递实际上是不可逆地发生,通过系统温度<math>T</math>和周围环境温度<math>T_surr</math>之间存在差异而进行驱动。
 +
  --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])该句有些不太理解
      第126行: 第127行:  
which is the basis of the accurate determination of the absolute entropy of pure substances from measured heat capacity curves and entropy changes at phase transitions, i.e. by calorimetry.<ref name="Oxtoby8th">Oxtoby, D. W; Gillis, H.P., [[Laurie Butler|Butler, L. J.]] (2015).''Principles of Modern Chemistry'', Brooks Cole. p. 617.  {{ISBN|978-1305079113}}</ref> <ref name="MortimerBook"></ref> Introducing a set of internal variables <math>\xi</math> to describe the deviation of a thermodynamic system in physical equilibrium (with the required well-defined uniform pressure ''P'' and temperature ''T'')<ref name="Schmidt-Rohr 14"></ref> from the chemical equilibrium state, one can record the equality
 
which is the basis of the accurate determination of the absolute entropy of pure substances from measured heat capacity curves and entropy changes at phase transitions, i.e. by calorimetry.<ref name="Oxtoby8th">Oxtoby, D. W; Gillis, H.P., [[Laurie Butler|Butler, L. J.]] (2015).''Principles of Modern Chemistry'', Brooks Cole. p. 617.  {{ISBN|978-1305079113}}</ref> <ref name="MortimerBook"></ref> Introducing a set of internal variables <math>\xi</math> to describe the deviation of a thermodynamic system in physical equilibrium (with the required well-defined uniform pressure ''P'' and temperature ''T'')<ref name="Schmidt-Rohr 14"></ref> from the chemical equilibrium state, one can record the equality
   −
which is the basis of the accurate determination of the absolute entropy of pure substances from measured heat capacity curves and entropy changes at phase transitions, i.e. by calorimetry.  from the chemical equilibrium state, one can record the equality
  −
  −
这是根据测得的热容曲线和相变时的熵变精确确定纯物质的绝对熵的基础。用量热法。从化学平衡来看,人们可以记录平等
      +
which is the basis of the accurate determination of the absolute entropy of pure substances from measured heat capacity curves and entropy changes at phase transitions, i.e. by calorimetry.[16] [11] Introducing a set of internal variables {\displaystyle \xi }\xi  to describe the deviation of a thermodynamic system in physical equilibrium (with the required well-defined uniform pressure P and temperature T)[15] from the chemical equilibrium state, one can record the equality
       +
这是通过测量热容曲线和相变熵变化,来准确测定纯物质的绝对熵的基础,比如量热法。
 +
为了描述一个热力学系统在物理平衡状态下(要求有明确定义的等压P和等温T)偏离化学平衡状态,引入一组内部变量<math>x_i</math>,可以用该等式
       
: <math>\mathrm dS = \frac{\delta Q}{T} - \frac{1}{T} \sum_{j} \, \Xi_{j} \,\delta \xi_j \,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text {(closed system, actually possible quasistatic irreversible process).}</math>
 
: <math>\mathrm dS = \frac{\delta Q}{T} - \frac{1}{T} \sum_{j} \, \Xi_{j} \,\delta \xi_j \,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text {(closed system, actually possible quasistatic irreversible process).}</math>
  −
<math>\mathrm dS = \frac{\delta Q}{T} - \frac{1}{T} \sum_{j} \, \Xi_{j} \,\delta \xi_j \,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text {(closed system, actually possible quasistatic irreversible process).}</math>
  −
  −
- frac { t }-frac {1}{ j } , Xi { j } , delta  Xi j, , , , , , , , , , , , , , , , , , , , , , , , ,.数学
  −
  −
        第148行: 第143行:  
The second term represents work of internal variables that can be perturbed by external influences, but the system cannot perform any positive work via internal variables. This statement introduces the impossibility of the reversion of evolution of the thermodynamic system in time and can be considered as a formulation of the second principle of thermodynamics – the formulation, which is, of course, equivalent to the formulation of the principle in terms of entropy.
 
The second term represents work of internal variables that can be perturbed by external influences, but the system cannot perform any positive work via internal variables. This statement introduces the impossibility of the reversion of evolution of the thermodynamic system in time and can be considered as a formulation of the second principle of thermodynamics – the formulation, which is, of course, equivalent to the formulation of the principle in terms of entropy.
   −
第二项代表内部变量的工作,这些内部变量可以受到外部影响的干扰,但是系统不能通过内部变量执行任何正功。这种说法介绍了热力学系统在时间上不可能逆转演化的事实,并且可以被认为是热力学第二原理的表述---- 这个表述,当然,相当于熵原理的表述。
+
第二项代表内部变量的功,这些内部变量可以受到外部影响的干扰,但是系统不能通过内部变量做任何正功。这种说法介绍了热力学系统在时间上不可能逆转演化的事实,并且可以被认为是热力学第二原理的另外一种相当于熵原理的表述。
 
        第162行: 第156行:  
The zeroth law of thermodynamics in its usual short statement allows recognition that two bodies in a relation of thermal equilibrium have the same temperature, especially that a test body has the same temperature as a reference thermometric body. For a body in thermal equilibrium with another, there are indefinitely many empirical temperature scales, in general respectively depending on the properties of a particular reference thermometric body. The second law allows a distinguished temperature scale, which defines an absolute, thermodynamic temperature, independent of the properties of any particular reference thermometric body.
 
The zeroth law of thermodynamics in its usual short statement allows recognition that two bodies in a relation of thermal equilibrium have the same temperature, especially that a test body has the same temperature as a reference thermometric body. For a body in thermal equilibrium with another, there are indefinitely many empirical temperature scales, in general respectively depending on the properties of a particular reference thermometric body. The second law allows a distinguished temperature scale, which defines an absolute, thermodynamic temperature, independent of the properties of any particular reference thermometric body.
   −
美国热力学第零定律协会在其通常的简短声明中允许承认,相对于热平衡的两个物体具有相同的温度,特别是测试物体具有与参考温度测量物体相同的温度。对于一个物体和另一个物体之间的热平衡,存在着无限多的经验温度标度,通常分别取决于特定参考温度标度的性质。第二定律允许区分温度标度,它定义了一个绝对的热力学温度,与任何特定的参考温度体的性质无关。
+
热力学第零定律——如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。热力学第零定律在它通常的简短叙述中让人们认识到热平衡关系中的两个物体具有相同的温度,特别是当一个被测物体与一个参考测温物体具有相同的温度时,对于一个与另一个处于热平衡的物体,有无限多的经验温标,这通常取决于特定参考温度标度的性质。热力学第二定律允许区分温度标度,它定义了一个绝对的热力学温度,与任何特定的参考温度体的性质无关。
 
  −
 
  −
 
  −
 
      +
  --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])补充热力学第零定律
      第182行: 第173行:  
The second law of thermodynamics may be expressed in many specific ways, the most prominent classical statements being the statement by Rudolf Clausius (1854), the statement by Lord Kelvin (1851), and the statement in axiomatic thermodynamics by Constantin Carathéodory (1909). These statements cast the law in general physical terms citing the impossibility of certain processes. The Clausius and the Kelvin statements have been shown to be equivalent.
 
The second law of thermodynamics may be expressed in many specific ways, the most prominent classical statements being the statement by Rudolf Clausius (1854), the statement by Lord Kelvin (1851), and the statement in axiomatic thermodynamics by Constantin Carathéodory (1909). These statements cast the law in general physical terms citing the impossibility of certain processes. The Clausius and the Kelvin statements have been shown to be equivalent.
   −
热力学第二定律可以用许多特定的方式来表达,最突出的经典陈述是 Rudolf Clausius (1854)的陈述,Kelvin 勋爵(1851)的陈述,以及康斯坦丁·卡拉西奥多里(1909)在公理化热力学中的陈述。这些陈述用一般的物理术语描述法律,引用某些过程的不可能性。克劳修斯和开尔文陈述被证明是等价的。
+
热力学第二定律可以用许多特定的方式来表达,最突出的经典陈述是 '''克劳修斯 Rudolf Clausius''' (1854)陈述,'''开尔文 Kelvin''' (1851)陈述,以及康斯坦丁·卡拉西奥多里 Constantin Carathéodory(1909)在公理化热力学中的陈述。这些陈述用一般的物理术语描述法律,引用某些过程的不可能性。克劳修斯和开尔文陈述被证明是等价的。
 +
     
575

个编辑

导航菜单