更改

跳到导航 跳到搜索
删除209字节 、 2020年7月23日 (四) 20:05
无编辑摘要
第6行: 第6行:  
换句话说,在非线性方程系统中,待解的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是当一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。
 
换句话说,在非线性方程系统中,待解的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是当一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。
   −
由于非线性动力学方程难以求解,通常用线性方程来近似非线性系统('''线性化 Linearization''')。这种方法对于一定范围的输入和某些精度要求下的效果不错,但一些有趣的现象如'''孤子 Soliton'''、'''混沌 Chaos'''和'''奇异性 Singularity'''在线性化后被隐藏<ref>[http://ocw.mit.edu/OcwWeb/Earth--Atmospheric--and-Planetary-Sciences/12-006JFall-2006/CourseHome/index.htm Nonlinear Dynamics I: Chaos] {{webarchive|url=https://web.archive.org/web/20080212045134/http://ocw.mit.edu/OcwWeb/Earth--Atmospheric--and-Planetary-Sciences/12-006JFall-2006/CourseHome/index.htm |date=2008-02-12}} at [http://ocw.mit.edu/OcwWeb/index.htm MIT's OpenCourseWare]</ref>。因此,非线性系统的动态行为在某些方面可能看起来违反直觉、不可预测、甚至混沌。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的整体影响。这种非线性是目前技术无法进行精确长期预测的原因之一。
+
由于非线性动力学方程难以求解,通常用线性方程来近似非线性系统('''线性化 Linearization''')。这种方法对于一定范围的输入和某些精度要求下的效果不错,但一些有趣的现象如'''孤子 Soliton'''、'''混沌 Chaos'''和'''奇异性 Singularity'''在线性化后被隐藏<ref>[http://ocw.mit.edu/OcwWeb/Earth--Atmospheric--and-Planetary-Sciences/12-006JFall-2006/CourseHome/index.htm Nonlinear Dynamics I: Chaos] at [http://ocw.mit.edu/OcwWeb/index.htm MIT's OpenCourseWare]</ref>。因此,非线性系统的动态行为在某些方面可能看起来违反直觉、不可预测、甚至混沌。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的整体影响。这种非线性是目前技术无法进行精确长期预测的原因之一。
    
有些作者用非线性科学这一术语来研究非线性系统。这一术语引起了其他人的争议:
 
有些作者用非线性科学这一术语来研究非线性系统。这一术语引起了其他人的争议:
第277行: 第277行:     
非线性动力学和混沌理论是系统发展的,从一阶微分方程及其分岔开始,然后是相平面分析,极限环和它们的分岔,最终得到Lorenz方程,混沌,迭代映射,周期倍增,重整化,分形和奇怪吸引。
 
非线性动力学和混沌理论是系统发展的,从一阶微分方程及其分岔开始,然后是相平面分析,极限环和它们的分岔,最终得到Lorenz方程,混沌,迭代映射,周期倍增,重整化,分形和奇怪吸引。
      
此系列课程由[[斯蒂文·斯特罗加茨 Steven H. Strogatz]]主持,内容包括机械振动,激光,生物节律,超导电路,昆虫爆发,化学振荡器,遗传控制系统,混沌水轮,甚至是使用混乱发送秘密信息的技术。在每种情况下,科学背景都在初级阶段进行解释,并与数学理论紧密结合。
 
此系列课程由[[斯蒂文·斯特罗加茨 Steven H. Strogatz]]主持,内容包括机械振动,激光,生物节律,超导电路,昆虫爆发,化学振荡器,遗传控制系统,混沌水轮,甚至是使用混乱发送秘密信息的技术。在每种情况下,科学背景都在初级阶段进行解释,并与数学理论紧密结合。
   −
{{Authority control}}
   
{{DEFAULTSORT:非线性系统}}
 
{{DEFAULTSORT:非线性系统}}
 
[[Category:非线性系统|非线性系统]]
 
[[Category:非线性系统|非线性系统]]
 
[[Category:动力系统]]
 
[[Category:动力系统]]
 
[[Category:基本物理概念]]
 
[[Category:基本物理概念]]
421

个编辑

导航菜单