更改

跳到导航 跳到搜索
添加423字节 、 2020年8月2日 (日) 20:49
第120行: 第120行:  
The terms 'classical irreversible thermodynamics' and 'local equilibrium thermodynamics' are sometimes used to refer to a version of non-equilibrium thermodynamics that demands certain simplifying assumptions, as follows. The assumptions have the effect of making each very small volume element of the system effectively homogeneous, or well-mixed, or without an effective spatial structure, and without kinetic energy of bulk flow or of diffusive flux. Even within the thought-frame of classical irreversible thermodynamics, care is needed in choosing the independent variables for systems. In some writings, it is assumed that the intensive variables of equilibrium thermodynamics are sufficient as the independent variables for the task (such variables are considered to have no 'memory', and do not show hysteresis); in particular, local flow intensive variables are not admitted as independent variables; local flows are considered as dependent on quasi-static local intensive variables.
 
The terms 'classical irreversible thermodynamics' and 'local equilibrium thermodynamics' are sometimes used to refer to a version of non-equilibrium thermodynamics that demands certain simplifying assumptions, as follows. The assumptions have the effect of making each very small volume element of the system effectively homogeneous, or well-mixed, or without an effective spatial structure, and without kinetic energy of bulk flow or of diffusive flux. Even within the thought-frame of classical irreversible thermodynamics, care is needed in choosing the independent variables for systems. In some writings, it is assumed that the intensive variables of equilibrium thermodynamics are sufficient as the independent variables for the task (such variables are considered to have no 'memory', and do not show hysteresis); in particular, local flow intensive variables are not admitted as independent variables; local flows are considered as dependent on quasi-static local intensive variables.
   −
系统的经典不可逆热力学术语。在一些著作中,假定平衡热力学的密集变量充分作为任务的独立变量(这些变量被认为没有”记忆” ,不显示滞后) ; 特别是,局部流密集变量不被承认为独立变量; 局部流被认为是依赖于准静态的局部密集变量。
+
术语“经典不可逆热力学”和“局部平衡热力学”有时被用来指非平衡热力学中的一类,它需要如下一些简化的假设。这些假设的效果是使系统的每个非常小的体积元是等效同质的,或者是充分混合的,或者没有有效的空间结构,以及没有体流动能或扩散通量。即使在经典不可逆热力学的思想框架内,在选择系统的独立变量时也需要谨慎。在某些著作中,假设平衡热力学的强度量足够作为任务的独立变量(这些变量被认为没有“记忆”,不显示迟滞现象);特别地,局部流的强度量不允许作为独立变量;局部流被认为依赖于准静态局部强度量。
      第128行: 第128行:  
Also it is assumed that the local entropy density is the same function of the other local intensive variables as in equilibrium; this is called the local thermodynamic equilibrium assumption (see also Keizer (1987)). Radiation is ignored because it is transfer of energy between regions, which can be remote from one another. In the classical irreversible thermodynamic approach, there is allowed very small spatial variation, from very small volume element to adjacent very small volume element, but it is assumed that the global entropy of the system can be found by simple spatial integration of the local entropy density; this means that spatial structure cannot contribute as it properly should to the global entropy assessment for the system. This approach assumes spatial and temporal continuity and even differentiability of locally defined intensive variables such as temperature and internal energy density. All of these are very stringent demands. Consequently, this approach can deal with only a very limited range of phenomena. This approach is nevertheless valuable because it can deal well with some macroscopically observable phenomena.
 
Also it is assumed that the local entropy density is the same function of the other local intensive variables as in equilibrium; this is called the local thermodynamic equilibrium assumption (see also Keizer (1987)). Radiation is ignored because it is transfer of energy between regions, which can be remote from one another. In the classical irreversible thermodynamic approach, there is allowed very small spatial variation, from very small volume element to adjacent very small volume element, but it is assumed that the global entropy of the system can be found by simple spatial integration of the local entropy density; this means that spatial structure cannot contribute as it properly should to the global entropy assessment for the system. This approach assumes spatial and temporal continuity and even differentiability of locally defined intensive variables such as temperature and internal energy density. All of these are very stringent demands. Consequently, this approach can deal with only a very limited range of phenomena. This approach is nevertheless valuable because it can deal well with some macroscopically observable phenomena.
   −
同时假设局部熵密度与平衡状态下其他局部密集型变量的函数相同,这被称为局部热力学平衡假设(参见 Keizer (1987))。辐射之所以被忽略,是因为它是能量在区域之间的转移,而区域之间可以相互远离。在经典的不可逆热力学方法中,允许有非常小的空间变化,从非常小的体积元到相邻的非常小的体积元,但是假定系统的总体熵可以通过简单的局部熵密度的空间积分得到,这意味着空间结构不能对系统的总体熵评价作出贡献,因为它应该对系统的总体熵评价作出贡献。这种方法假设空间和时间的连续性,甚至可微的局部定义的强度变量,如温度和内部能量密度。所有这些都是非常严格的要求。因此,这种方法只能处理非常有限范围的现象。然而,这种方法是有价值的,因为它可以很好地处理一些宏观上可观察到的现象。
+
同时假设局部熵密度与其他局部强度量的函数关系和平衡态相同,这被称为局部热力学平衡假设(参见 Keizer (1987))。辐射可以被忽略,因为它是能量在区域之间的转移,而区域之间可以相互远离。在经典的不可逆热力学方法中,允许从微小体积元到相邻的微小的体积元有非常小的空间变化,但是假定系统的总熵可以通过简单的局部熵密度的空间积分得到,这意味着空间结构不能对系统的总熵作出贡献。这种方法假设空间和时间的连续性,甚至假设局部定义的强度量是可微的,如温度和内部能量密度。所有这些假设都是非常严格的要求。因此,这种方法只能处理非常有限范围的现象。然而这种方法是有价值的,因为它可以很好地处理一些宏观上可观察到的现象。
      第136行: 第136行:  
In other writings, local flow variables are considered; these might be considered as classical by analogy with the time-invariant long-term time-averages of flows produced by endlessly repeated cyclic processes; examples with flows are in the thermoelectric phenomena known as the Seebeck and the Peltier effects, considered by Kelvin in the nineteenth century and by Lars Onsager in the twentieth. These effects occur at metal junctions, which were originally effectively treated as two-dimensional surfaces, with no spatial volume, and no spatial variation.
 
In other writings, local flow variables are considered; these might be considered as classical by analogy with the time-invariant long-term time-averages of flows produced by endlessly repeated cyclic processes; examples with flows are in the thermoelectric phenomena known as the Seebeck and the Peltier effects, considered by Kelvin in the nineteenth century and by Lars Onsager in the twentieth. These effects occur at metal junctions, which were originally effectively treated as two-dimensional surfaces, with no spatial volume, and no spatial variation.
   −
在其他著作中,考虑了局部流动变量; 这些可以被认为是经典的,类比于由无休止的重复循环过程产生的流动的时不变的长期时间平均值; 有关流动的例子是被称为 Seebeck 和 Peltier 效应的热电现象,开尔文在十九世纪和拉斯昂萨格尔在二十世纪考虑。这些效应发生在金属连接处,最初被有效地处理为二维表面,没有空间体积,也没有空间变化。
+
在其他著作中,考虑了局部流变量; 这些可以被认为是经典的,类比于由无休止的重复循环过程产生的流动的时间不变的长期时间平均值; 有关流动的例子是被称为 Seebeck 和 Peltier 效应的热电现象,开尔文在十九世纪以及拉斯昂萨格尔在二十世纪考虑了这一现象。这些效应发生在金属连接处,最初被有效地处理为二维表面,没有空间体积,也没有空间变化。
          
====Local equilibrium thermodynamics with materials with "memory"====
 
====Local equilibrium thermodynamics with materials with "memory"====
 +
“记忆”材料的局部平衡热力学
    
A further extension of local equilibrium thermodynamics is to allow that materials may have "memory", so that their [[constitutive equation]]s depend not only on present values but also on past values of local equilibrium variables. Thus time comes into the picture more deeply than for time-dependent local equilibrium thermodynamics with memoryless materials, but fluxes are not independent variables of state.<ref>{{cite journal | last1 = Coleman | first1 = B.D. | last2 = Noll | first2 = W. | year = 1963 | title = The thermodynamics of elastic materials with heat conduction and viscosity | url = | journal = Arch. Ration. Mach. Analysis | volume = 13 | issue = 1| pages = 167–178 | doi=10.1007/bf01262690| bibcode = 1963ArRMA..13..167C }}</ref>
 
A further extension of local equilibrium thermodynamics is to allow that materials may have "memory", so that their [[constitutive equation]]s depend not only on present values but also on past values of local equilibrium variables. Thus time comes into the picture more deeply than for time-dependent local equilibrium thermodynamics with memoryless materials, but fluxes are not independent variables of state.<ref>{{cite journal | last1 = Coleman | first1 = B.D. | last2 = Noll | first2 = W. | year = 1963 | title = The thermodynamics of elastic materials with heat conduction and viscosity | url = | journal = Arch. Ration. Mach. Analysis | volume = 13 | issue = 1| pages = 167–178 | doi=10.1007/bf01262690| bibcode = 1963ArRMA..13..167C }}</ref>
第146行: 第147行:  
A further extension of local equilibrium thermodynamics is to allow that materials may have "memory", so that their constitutive equations depend not only on present values but also on past values of local equilibrium variables. Thus time comes into the picture more deeply than for time-dependent local equilibrium thermodynamics with memoryless materials, but fluxes are not independent variables of state.
 
A further extension of local equilibrium thermodynamics is to allow that materials may have "memory", so that their constitutive equations depend not only on present values but also on past values of local equilibrium variables. Thus time comes into the picture more deeply than for time-dependent local equilibrium thermodynamics with memoryless materials, but fluxes are not independent variables of state.
   −
局域平衡热力学的进一步扩展是允许材料具有”记忆” ,因此它们的本构方程不仅依赖于现值,而且依赖于局域平衡变量的过去值。因此,对于无记忆材料,时间比依赖时间的局域平衡热力学更为深入,但是通量并不是状态的独立变量。
+
局域平衡热力学的进一步扩展是允许材料具有”记忆” ,因此它们的本构方程不仅依赖于当前值,而且依赖于局域平衡变量的过去值。因此相比于无记忆材料依赖时间的局域平衡热力学,在有记忆材料研究中时间在物理图像中更为深入,但是通量并不是状态的独立变量。
    
===Extended irreversible thermodynamics===
 
===Extended irreversible thermodynamics===
320

个编辑

导航菜单