更改

跳到导航 跳到搜索
添加549字节 、 2020年8月2日 (日) 17:00
第114行: 第114行:     
===Local equilibrium thermodynamics===
 
===Local equilibrium thermodynamics===
 +
局部平衡热力学
    
The terms 'classical irreversible thermodynamics'<ref name="Lebon Jou Casas-Vázquez 2008"/> and 'local equilibrium thermodynamics' are sometimes used to refer to a version of non-equilibrium thermodynamics that demands certain simplifying assumptions, as follows. The assumptions have the effect of making each very small volume element of the system effectively homogeneous, or well-mixed, or without an effective spatial structure, and without kinetic energy of bulk flow or of diffusive flux. Even within the thought-frame of classical irreversible thermodynamics, care<ref name="Lavenda 1978"/> is needed in choosing the independent variables<ref>Prigogine, I., Defay, R. (1950/1954). ''Chemical Thermodynamics'', Longmans, Green & Co, London, page 1.</ref> for systems. In some writings, it is assumed that the intensive variables of equilibrium thermodynamics are sufficient as the independent variables for the task (such variables are considered to have no 'memory', and do not show hysteresis); in particular, local flow intensive variables are not admitted as independent variables; local flows are considered as dependent on quasi-static local intensive variables.
 
The terms 'classical irreversible thermodynamics'<ref name="Lebon Jou Casas-Vázquez 2008"/> and 'local equilibrium thermodynamics' are sometimes used to refer to a version of non-equilibrium thermodynamics that demands certain simplifying assumptions, as follows. The assumptions have the effect of making each very small volume element of the system effectively homogeneous, or well-mixed, or without an effective spatial structure, and without kinetic energy of bulk flow or of diffusive flux. Even within the thought-frame of classical irreversible thermodynamics, care<ref name="Lavenda 1978"/> is needed in choosing the independent variables<ref>Prigogine, I., Defay, R. (1950/1954). ''Chemical Thermodynamics'', Longmans, Green & Co, London, page 1.</ref> for systems. In some writings, it is assumed that the intensive variables of equilibrium thermodynamics are sufficient as the independent variables for the task (such variables are considered to have no 'memory', and do not show hysteresis); in particular, local flow intensive variables are not admitted as independent variables; local flows are considered as dependent on quasi-static local intensive variables.
   −
The terms 'classical irreversible thermodynamics' for systems. In some writings, it is assumed that the intensive variables of equilibrium thermodynamics are sufficient as the independent variables for the task (such variables are considered to have no 'memory', and do not show hysteresis); in particular, local flow intensive variables are not admitted as independent variables; local flows are considered as dependent on quasi-static local intensive variables.
+
The terms 'classical irreversible thermodynamics' and 'local equilibrium thermodynamics' are sometimes used to refer to a version of non-equilibrium thermodynamics that demands certain simplifying assumptions, as follows. The assumptions have the effect of making each very small volume element of the system effectively homogeneous, or well-mixed, or without an effective spatial structure, and without kinetic energy of bulk flow or of diffusive flux. Even within the thought-frame of classical irreversible thermodynamics, care is needed in choosing the independent variables for systems. In some writings, it is assumed that the intensive variables of equilibrium thermodynamics are sufficient as the independent variables for the task (such variables are considered to have no 'memory', and do not show hysteresis); in particular, local flow intensive variables are not admitted as independent variables; local flows are considered as dependent on quasi-static local intensive variables.
    
系统的经典不可逆热力学术语。在一些著作中,假定平衡热力学的密集变量充分作为任务的独立变量(这些变量被认为没有”记忆” ,不显示滞后) ; 特别是,局部流密集变量不被承认为独立变量; 局部流被认为是依赖于准静态的局部密集变量。
 
系统的经典不可逆热力学术语。在一些著作中,假定平衡热力学的密集变量充分作为任务的独立变量(这些变量被认为没有”记忆” ,不显示滞后) ; 特别是,局部流密集变量不被承认为独立变量; 局部流被认为是依赖于准静态的局部密集变量。
第146行: 第147行:     
局域平衡热力学的进一步扩展是允许材料具有”记忆” ,因此它们的本构方程不仅依赖于现值,而且依赖于局域平衡变量的过去值。因此,对于无记忆材料,时间比依赖时间的局域平衡热力学更为深入,但是通量并不是状态的独立变量。
 
局域平衡热力学的进一步扩展是允许材料具有”记忆” ,因此它们的本构方程不仅依赖于现值,而且依赖于局域平衡变量的过去值。因此,对于无记忆材料,时间比依赖时间的局域平衡热力学更为深入,但是通量并不是状态的独立变量。
  −
      
===Extended irreversible thermodynamics===
 
===Extended irreversible thermodynamics===
320

个编辑

导航菜单