更改

跳到导航 跳到搜索
添加8字节 、 2020年8月3日 (一) 22:11
第60行: 第60行:     
===Non-equilibrium state variables===
 
===Non-equilibrium state variables===
 +
非平衡态变量
    
The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. On occasions when the system happens to be in states that are sufficiently close to thermodynamic equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and energy. In general, non-equilibrium thermodynamic systems are spatially and temporally non-uniform, but their non-uniformity still has a sufficient degree of smoothness to support the existence of suitable time and space derivatives of non-equilibrium state variables. Because of the spatial non-uniformity, non-equilibrium state variables that correspond to extensive thermodynamic state variables have to be defined as spatial densities of the corresponding extensive equilibrium state variables. On occasions when the system is sufficiently close to thermodynamic equilibrium, intensive non-equilibrium state variables, for example temperature and pressure, correspond closely with equilibrium state variables. It is necessary that measuring probes be small enough, and rapidly enough responding, to capture relevant non-uniformity. Further, the non-equilibrium state variables are required to be mathematically functionally related to one another in ways that suitably resemble corresponding relations between equilibrium thermodynamic state variables.<ref name="Gyarmati 1970"/> In reality, these requirements are very demanding, and it may be difficult or practically, or even theoretically, impossible to satisfy them. This is part of why non-equilibrium thermodynamics is a work in progress.
 
The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. On occasions when the system happens to be in states that are sufficiently close to thermodynamic equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and energy. In general, non-equilibrium thermodynamic systems are spatially and temporally non-uniform, but their non-uniformity still has a sufficient degree of smoothness to support the existence of suitable time and space derivatives of non-equilibrium state variables. Because of the spatial non-uniformity, non-equilibrium state variables that correspond to extensive thermodynamic state variables have to be defined as spatial densities of the corresponding extensive equilibrium state variables. On occasions when the system is sufficiently close to thermodynamic equilibrium, intensive non-equilibrium state variables, for example temperature and pressure, correspond closely with equilibrium state variables. It is necessary that measuring probes be small enough, and rapidly enough responding, to capture relevant non-uniformity. Further, the non-equilibrium state variables are required to be mathematically functionally related to one another in ways that suitably resemble corresponding relations between equilibrium thermodynamic state variables.<ref name="Gyarmati 1970"/> In reality, these requirements are very demanding, and it may be difficult or practically, or even theoretically, impossible to satisfy them. This is part of why non-equilibrium thermodynamics is a work in progress.
第65行: 第66行:  
The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. On occasions when the system happens to be in states that are sufficiently close to thermodynamic equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and energy. In general, non-equilibrium thermodynamic systems are spatially and temporally non-uniform, but their non-uniformity still has a sufficient degree of smoothness to support the existence of suitable time and space derivatives of non-equilibrium state variables. Because of the spatial non-uniformity, non-equilibrium state variables that correspond to extensive thermodynamic state variables have to be defined as spatial densities of the corresponding extensive equilibrium state variables. On occasions when the system is sufficiently close to thermodynamic equilibrium, intensive non-equilibrium state variables, for example temperature and pressure, correspond closely with equilibrium state variables. It is necessary that measuring probes be small enough, and rapidly enough responding, to capture relevant non-uniformity. Further, the non-equilibrium state variables are required to be mathematically functionally related to one another in ways that suitably resemble corresponding relations between equilibrium thermodynamic state variables. In reality, these requirements are very demanding, and it may be difficult or practically, or even theoretically, impossible to satisfy them. This is part of why non-equilibrium thermodynamics is a work in progress.
 
The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. On occasions when the system happens to be in states that are sufficiently close to thermodynamic equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and energy. In general, non-equilibrium thermodynamic systems are spatially and temporally non-uniform, but their non-uniformity still has a sufficient degree of smoothness to support the existence of suitable time and space derivatives of non-equilibrium state variables. Because of the spatial non-uniformity, non-equilibrium state variables that correspond to extensive thermodynamic state variables have to be defined as spatial densities of the corresponding extensive equilibrium state variables. On occasions when the system is sufficiently close to thermodynamic equilibrium, intensive non-equilibrium state variables, for example temperature and pressure, correspond closely with equilibrium state variables. It is necessary that measuring probes be small enough, and rapidly enough responding, to capture relevant non-uniformity. Further, the non-equilibrium state variables are required to be mathematically functionally related to one another in ways that suitably resemble corresponding relations between equilibrium thermodynamic state variables. In reality, these requirements are very demanding, and it may be difficult or practically, or even theoretically, impossible to satisfy them. This is part of why non-equilibrium thermodynamics is a work in progress.
   −
定义非平衡热力学状态变量的合适关系如下。当系统处于足够接近热力学平衡态的状态时,非平衡态变量可以通过与测量热力学状态变量相同的技术,或者通过相应的时间和空间导数,包括物质和能量的通量,足够精确地在局部测量。一般来说,非平衡态热力学系统在空间和时间上都是不均匀的,但是它们的不均匀性仍然具有足够的光滑度,以支持存在适当的非平衡态变量的时间和空间导数。由于空间的非均匀性,对应于广义热力学状态变量的非平衡状态变量必须定义为相应广义平衡状态变量的空间密度。在系统足够接近热力学平衡的情况下,密集的非平衡状态变量,例如温度和压力,与平衡状态变量密切对应。为了获得相应的非均匀性,测量探头必须足够小,响应速度也必须足够快。此外,非平衡状态变量需要在数学上相互之间以适当类似于平衡热力学状态变量之间对应关系的方式进行功能联系。在现实中,这些要求是非常苛刻的,并且可能很难或实际上,甚至在理论上,不可能满足它们。这就是为什么非平衡态热力学是一个进展中的工作的一部分。
+
定义非平衡热力学状态变量的合适关系如下所述。当系统处于足够接近热力学平衡态的状态时,非平衡态变量可以通过与测量热力学状态变量相同的技术,足够精确地在局部测量,或者通过相应的时间和空间导数得到,包括物质和能量的流。一般来说,非平衡态热力学系统在空间和时间上都是不均匀的,但是它们的不均匀性仍然具有足够的光滑度,使得非平衡态变量存在合适的时间和空间导数。由于空间的非均匀性,非平衡态对应的热力学广延量必须定义为平衡态中相应广延量的空间密度。在系统足够接近热力学平衡的情况下,非平衡态的强度量,例如温度和压强,与平衡状态变量密切对应。为了刻画相应的非均匀性,测量探头必须足够小,响应速度也必须足够快。此外,非平衡状态变量之间需要在数学上和功能上相互关联,以适当的类似于平衡热力学状态变量之间对应关系的方式。在现实中这些要求是非常苛刻的,并且可能很难,或者说在实际上,甚至在理论上,都不可能满足。这就一部分解释了为什么非平衡态热力学是一个在进展中的工作。
    
==Overview==
 
==Overview==
320

个编辑

导航菜单