更改

跳到导航 跳到搜索
添加160字节 、 2020年8月11日 (二) 22:03
第66行: 第66行:  
Compared with individual robots, a swarm can commonly decompose its given missions to their subtasks; A swarm is more robust to partial swarm failure and is more flexible with regard to different missions
 
Compared with individual robots, a swarm can commonly decompose its given missions to their subtasks; A swarm is more robust to partial swarm failure and is more flexible with regard to different missions
   −
与单个机器人相比,集群机器人通常可以将其给定的任务分解为子任务;对于部分机器人指令失效的情况集群机器人更加稳定,并且在执行不同任务时更为灵活。
+
与单个机器人相比,集群机器人通常可以将其给定的任务自行分解为子任务;对于部分集群指令失效的情况,集群机器人更加稳定,它们在执行不同任务时更为灵活。
    
One such swarm system is the LIBOT Robotic System<ref>{{citation|doi=10.1109/CYBER.2012.6392577|chapter=Libot: Design of a low cost mobile robot for outdoor swarm robotics|title=2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER)|pages=342–347|year=2012|last1=Zahugi|first1=Emaad Mohamed H.|last2=Shabani|first2=Ahmed M.|last3=Prasad|first3=T. V.|isbn=978-1-4673-1421-3}}</ref> that involves a low cost robot built for outdoor swarm robotics. The robots are also made with provisions for indoor use via Wi-Fi, since the GPS sensors provide poor communication inside buildings.  Another such attempt is the micro robot (Colias),<ref>Arvin, F.; Murray, J.C.; Licheng Shi; Chun Zhang; Shigang Yue, "[https://www.researchgate.net/profile/Farshad_Arvin/publication/271545281_Development_of_an_autonomous_micro_robot_for_swarm_robotics/links/55e4bad008aede0b57357ed4.pdf Development of an autonomous micro robot for swarm robotics]," Mechatronics and Automation (ICMA), 2014 IEEE International Conference on , vol., no., pp.635,640, 3-6 Aug. 2014 doi: 10.1109/ICMA.2014.6885771</ref> built in the Computer Intelligence Lab at the [[University of Lincoln]], UK. This micro robot is built on a 4&nbsp;cm circular chassis and is low-cost and open platform for use in a variety of Swarm Robotics applications.
 
One such swarm system is the LIBOT Robotic System<ref>{{citation|doi=10.1109/CYBER.2012.6392577|chapter=Libot: Design of a low cost mobile robot for outdoor swarm robotics|title=2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER)|pages=342–347|year=2012|last1=Zahugi|first1=Emaad Mohamed H.|last2=Shabani|first2=Ahmed M.|last3=Prasad|first3=T. V.|isbn=978-1-4673-1421-3}}</ref> that involves a low cost robot built for outdoor swarm robotics. The robots are also made with provisions for indoor use via Wi-Fi, since the GPS sensors provide poor communication inside buildings.  Another such attempt is the micro robot (Colias),<ref>Arvin, F.; Murray, J.C.; Licheng Shi; Chun Zhang; Shigang Yue, "[https://www.researchgate.net/profile/Farshad_Arvin/publication/271545281_Development_of_an_autonomous_micro_robot_for_swarm_robotics/links/55e4bad008aede0b57357ed4.pdf Development of an autonomous micro robot for swarm robotics]," Mechatronics and Automation (ICMA), 2014 IEEE International Conference on , vol., no., pp.635,640, 3-6 Aug. 2014 doi: 10.1109/ICMA.2014.6885771</ref> built in the Computer Intelligence Lab at the [[University of Lincoln]], UK. This micro robot is built on a 4&nbsp;cm circular chassis and is low-cost and open platform for use in a variety of Swarm Robotics applications.
第72行: 第72行:  
One such swarm system is the LIBOT Robotic System that involves a low cost robot built for outdoor swarm robotics. The robots are also made with provisions for indoor use via Wi-Fi, since the GPS sensors provide poor communication inside buildings.  Another such attempt is the micro robot (Colias), built in the Computer Intelligence Lab at the University of Lincoln, UK. This micro robot is built on a 4&nbsp;cm circular chassis and is low-cost and open platform for use in a variety of Swarm Robotics applications.
 
One such swarm system is the LIBOT Robotic System that involves a low cost robot built for outdoor swarm robotics. The robots are also made with provisions for indoor use via Wi-Fi, since the GPS sensors provide poor communication inside buildings.  Another such attempt is the micro robot (Colias), built in the Computer Intelligence Lab at the University of Lincoln, UK. This micro robot is built on a 4&nbsp;cm circular chassis and is low-cost and open platform for use in a variety of Swarm Robotics applications.
   −
有一种叫做LIBOT机器人系统的集群系统,本质是由一个低成本的机器人去建立户外的群体机器人。由于GPS传感器在建筑物内部的通讯不畅,这些机器人还配备了可通过Wi-Fi在室内使用的设备。另一个进行此类尝试的是个叫做Colias的微型机器人,该机器人在英国林肯大学的计算机智能实验室中建立。这款微型机器人建立在4厘米的圆形底盘上,低成本而且其开放的平台可用于各种集群机器人的应用。
+
有一种叫做'''<font color="#ff8000"> LIBOT机器人系统LIBOT Robotic System</font>'''的集群系统,本质上是由一个低成本的机器人组成的户外的机器人群体。由于GPS传感器在建筑物内部通讯不畅,这些机器人同时配备了Wi-Fi设备。另外一个进行此类尝试的是个叫做'''<font color="#ff8000"> Colias</font>'''的微型机器人,该机器人在英国林肯大学的计算机智能实验室中建立。这款微型机器人建立在4厘米的圆形底盘上,其低成本和开放的平台使它兼容于各种集群机器人的应用。
      第82行: 第82行:  
Potential applications for swarm robotics are many.  They include tasks that demand miniaturization (nanorobotics, microbotics), like distributed sensing tasks in micromachinery or the human body. One of the most promising uses of swarm robotics is in disaster rescue missions.  Swarms of robots of different sizes could be sent to places rescue workers can't reach safely, to detect the presence of life via infra-red sensors. On the other hand, swarm robotics can be suited to tasks that demand cheap designs, for instance mining or agricultural foraging tasks.
 
Potential applications for swarm robotics are many.  They include tasks that demand miniaturization (nanorobotics, microbotics), like distributed sensing tasks in micromachinery or the human body. One of the most promising uses of swarm robotics is in disaster rescue missions.  Swarms of robots of different sizes could be sent to places rescue workers can't reach safely, to detect the presence of life via infra-red sensors. On the other hand, swarm robotics can be suited to tasks that demand cheap designs, for instance mining or agricultural foraging tasks.
   −
集群机器人技术的潜在应用很多。它们包括具有微型化需求的任务(纳米机器人,微生物学),比如微型机械或人体中的分布式传感任务。集群机器人技术最有前途的应用之一是在灾难救援任务中。大量不同尺寸的机器人可以被送到救援人员无法安全到达的地方,通过红外传感器探测生命的存在。另一方面,集群机器人技术可以适合需要廉价设计的任务,例如采矿或农业采掘任务。
+
集群机器人技术的潜在应用很多。它们包括具有微型化需求的任务(纳米机器人,微生物学),比如微型机械或人体中的分布式传感任务。集群机器人技术最有前途的应用之一是在灾难救援任务中,大量不同尺寸的机器人可以被送到救援人员无法安全到达的地方,通过红外传感器探测生命的存在。另一方面,集群机器人技术也适合需要低廉经济的设计任务,例如采矿或农业采掘任务。
      第90行: 第90行:  
More controversially, swarms of military robots can form an autonomous army.  U.S. Naval forces have tested a swarm of autonomous boats that can steer and take offensive actions by themselves. The boats are unmanned and can be fitted with any kind of kit to deter and destroy enemy vessels.
 
More controversially, swarms of military robots can form an autonomous army.  U.S. Naval forces have tested a swarm of autonomous boats that can steer and take offensive actions by themselves. The boats are unmanned and can be fitted with any kind of kit to deter and destroy enemy vessels.
   −
更有争议的是,军事集群机器人可以组成一支自主部队。美国海军已经对一大批可以自行操纵并采取进攻行动的自主舰艇进行了测试。这些船是无人驾驶的,可以安装任何种类的工具来威慑和摧毁敌方船只。
+
除此之外,有争议的是军事集群机器人,它可以组成一支自主部队。美国海军已经对一大批可以自行操纵并采取进攻行为的自主舰艇进行了测试。这些船是无人驾驶的,可以安装任何种类的工具来威慑和摧毁敌方船只。
      第104行: 第104行:  
Most efforts have focused on relatively small groups of machines. However, a swarm consisting of 1,024 individual robots was demonstrated by Harvard in 2014, the largest to date.
 
Most efforts have focused on relatively small groups of machines. However, a swarm consisting of 1,024 individual robots was demonstrated by Harvard in 2014, the largest to date.
   −
大多数研究成果都集中在相对小规模的集群机体上。然而,哈佛大学在2014年展示了由1,024个机器人组成的群体,这是迄今为止规模最大的群体。
+
目前大多数研究成果都集中在相对小规模的集群机体上。然而,哈佛大学在2014年展示了由1,024个机器人组成的群体,这是迄今为止规模最大的机器人群体。
    
Another large set of applications may be solved using swarms of [[micro air vehicle]]s, which are also broadly investigated nowadays.  In comparison with the pioneering studies of swarms of flying robots using precise [[motion capture]] systems in laboratory conditions,<ref>Kushleyev, A.; Mellinger, D.; Powers, C.; Kumar, V., "[https://pdfs.semanticscholar.org/b063/239bd450038531eeb2db5466eaed34a0f9a0.pdf Towards a swarm of agile micro quadrotors]" Autonomous Robots, Volume 35, Issue 4, pp 287-300, November 2013</ref> current systems such as [[Shooting Star (drone)|Shooting Star]] can control teams of hundreds of micro aerial vehicles in outdoor environment<ref>Vasarhelyi, G.; Virágh, C.; Tarcai, N.; Somorjai, G.; Vicsek, T. [https://arxiv.org/pdf/1402.3588 Outdoor flocking and formation flight with autonomous aerial robots]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), 2014</ref> using [[Satellite navigation|GNSS]] systems (such as GPS) or even  stabilize them using onboard [[robot localization|localization]] systems<ref>Faigl, J.; Krajnik, T.; Chudoba, J.; Preucil, L.; Saska, M. [http://eprints.lincoln.ac.uk/13799/1/__ddat02_staffhome_jpartridge_camera_2013_ICRA.pdf Low-Cost Embedded System for Relative Localization in Robotic Swarms]. In ICRA2013: Proceedings of 2013 IEEE International Conference on Robotics and Automation. 2013.</ref> where GPS is unavailable.<ref>Saska, M.; Vakula, J.; Preucil, L. [https://ieeexplore.ieee.org/abstract/document/6907374/ Swarms of Micro Aerial Vehicles Stabilized Under a Visual Relative Localization]. In ICRA2014: Proceedings of 2014 IEEE International Conference on Robotics and Automation. 2014.</ref><ref>Saska, M. [https://www.researchgate.net/profile/Martin_Saska/publication/282922149_MAV-swarms_Unmanned_aerial_vehicles_stabilized_along_a_given_path_using_onboard_relative_localization/links/5684f75b08ae19758394dcdf.pdf MAV-swarms: unmanned aerial vehicles stabilized along a given path using onboard relative localization]. In Proceedings of 2015 International Conference on Unmanned Aircraft Systems (ICUAS). 2015</ref>  Swarms of micro aerial vehicles have been already tested in tasks of autonomous surveillance,<ref>Saska, M.; Chudoba, J.; Preucil, L.; Thomas, J.; Loianno, G.; Tresnak, A.; Vonasek, V.; Kumar, V. [https://ieeexplore.ieee.org/abstract/document/6842301/ Autonomous Deployment of Swarms of Micro-Aerial Vehicles in Cooperative Surveillance]. In Proceedings of 2014 International Conference on Unmanned Aircraft Systems (ICUAS). 2014.</ref> plume tracking,<ref>Saska, M.; Langr J.; L. Preucil. [https://www.researchgate.net/profile/Martin_Saska/publication/290558108_Plume_Tracking_by_a_Self-stabilized_Group_of_Micro_Aerial_Vehicles/links/57040e7908ae74a08e245eeb.pdf Plume Tracking by a Self-stabilized Group of Micro Aerial Vehicles]. In Modelling and Simulation for Autonomous Systems, 2014.</ref> and reconnaissance in a compact phalanx.<ref>Saska, M.; Kasl, Z.; Preucil, L. [http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2014/media/files/2295.pdf Motion Planning and Control of Formations of Micro Aerial Vehicles]. In Proceedings of the 19th World Congress of the International Federation of Automatic Control. 2014.</ref>  Numerous works on cooperative swarms of unmanned ground and aerial vehicles have been conducted with target applications of cooperative environment monitoring,<ref>Saska, M.; Vonasek, V.; Krajnik, T.; Preucil, L. [http://labe.felk.cvut.cz/~tkrajnik/ardrone/articles/formace.pdf Coordination and Navigation of Heterogeneous UAVs-UGVs Teams Localized by a Hawk-Eye Approach]. In Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012.</ref> [[simultaneous localization and mapping]],<ref>Chung, Soon-Jo, et al. "[https://authors.library.caltech.edu/87925/1/tro-aerial-robotics_final.pdf A survey on aerial swarm robotics]." IEEE Transactions on Robotics 34.4 (2018): 837-855.</ref> convoy protection,<ref>Saska, M.; Vonasek, V.; Krajnik, T.; Preucil, L. [http://eprints.lincoln.ac.uk/14891/1/formations_2014_IJRR.pdf Coordination and Navigation of Heterogeneous MAV–UGV Formations Localized by a ‘hawk-eye’-like Approach Under a Model Predictive Control Scheme]. International Journal of Robotics Research 33(10):1393–1412, September 2014.</ref> and moving target localization and tracking.<ref>Kwon, H; Pack, D. J. [https://link.springer.com/article/10.1007/s10846-011-9581-5 A Robust Mobile Target Localization Method for Cooperative Unmanned Aerial Vehicles Using Sensor Fusion Quality]. Journal of Intelligent and Robotic Systems, Volume 65, Issue 1, pp 479-493, January 2012.</ref>
 
Another large set of applications may be solved using swarms of [[micro air vehicle]]s, which are also broadly investigated nowadays.  In comparison with the pioneering studies of swarms of flying robots using precise [[motion capture]] systems in laboratory conditions,<ref>Kushleyev, A.; Mellinger, D.; Powers, C.; Kumar, V., "[https://pdfs.semanticscholar.org/b063/239bd450038531eeb2db5466eaed34a0f9a0.pdf Towards a swarm of agile micro quadrotors]" Autonomous Robots, Volume 35, Issue 4, pp 287-300, November 2013</ref> current systems such as [[Shooting Star (drone)|Shooting Star]] can control teams of hundreds of micro aerial vehicles in outdoor environment<ref>Vasarhelyi, G.; Virágh, C.; Tarcai, N.; Somorjai, G.; Vicsek, T. [https://arxiv.org/pdf/1402.3588 Outdoor flocking and formation flight with autonomous aerial robots]. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), 2014</ref> using [[Satellite navigation|GNSS]] systems (such as GPS) or even  stabilize them using onboard [[robot localization|localization]] systems<ref>Faigl, J.; Krajnik, T.; Chudoba, J.; Preucil, L.; Saska, M. [http://eprints.lincoln.ac.uk/13799/1/__ddat02_staffhome_jpartridge_camera_2013_ICRA.pdf Low-Cost Embedded System for Relative Localization in Robotic Swarms]. In ICRA2013: Proceedings of 2013 IEEE International Conference on Robotics and Automation. 2013.</ref> where GPS is unavailable.<ref>Saska, M.; Vakula, J.; Preucil, L. [https://ieeexplore.ieee.org/abstract/document/6907374/ Swarms of Micro Aerial Vehicles Stabilized Under a Visual Relative Localization]. In ICRA2014: Proceedings of 2014 IEEE International Conference on Robotics and Automation. 2014.</ref><ref>Saska, M. [https://www.researchgate.net/profile/Martin_Saska/publication/282922149_MAV-swarms_Unmanned_aerial_vehicles_stabilized_along_a_given_path_using_onboard_relative_localization/links/5684f75b08ae19758394dcdf.pdf MAV-swarms: unmanned aerial vehicles stabilized along a given path using onboard relative localization]. In Proceedings of 2015 International Conference on Unmanned Aircraft Systems (ICUAS). 2015</ref>  Swarms of micro aerial vehicles have been already tested in tasks of autonomous surveillance,<ref>Saska, M.; Chudoba, J.; Preucil, L.; Thomas, J.; Loianno, G.; Tresnak, A.; Vonasek, V.; Kumar, V. [https://ieeexplore.ieee.org/abstract/document/6842301/ Autonomous Deployment of Swarms of Micro-Aerial Vehicles in Cooperative Surveillance]. In Proceedings of 2014 International Conference on Unmanned Aircraft Systems (ICUAS). 2014.</ref> plume tracking,<ref>Saska, M.; Langr J.; L. Preucil. [https://www.researchgate.net/profile/Martin_Saska/publication/290558108_Plume_Tracking_by_a_Self-stabilized_Group_of_Micro_Aerial_Vehicles/links/57040e7908ae74a08e245eeb.pdf Plume Tracking by a Self-stabilized Group of Micro Aerial Vehicles]. In Modelling and Simulation for Autonomous Systems, 2014.</ref> and reconnaissance in a compact phalanx.<ref>Saska, M.; Kasl, Z.; Preucil, L. [http://www.nt.ntnu.no/users/skoge/prost/proceedings/ifac2014/media/files/2295.pdf Motion Planning and Control of Formations of Micro Aerial Vehicles]. In Proceedings of the 19th World Congress of the International Federation of Automatic Control. 2014.</ref>  Numerous works on cooperative swarms of unmanned ground and aerial vehicles have been conducted with target applications of cooperative environment monitoring,<ref>Saska, M.; Vonasek, V.; Krajnik, T.; Preucil, L. [http://labe.felk.cvut.cz/~tkrajnik/ardrone/articles/formace.pdf Coordination and Navigation of Heterogeneous UAVs-UGVs Teams Localized by a Hawk-Eye Approach]. In Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2012.</ref> [[simultaneous localization and mapping]],<ref>Chung, Soon-Jo, et al. "[https://authors.library.caltech.edu/87925/1/tro-aerial-robotics_final.pdf A survey on aerial swarm robotics]." IEEE Transactions on Robotics 34.4 (2018): 837-855.</ref> convoy protection,<ref>Saska, M.; Vonasek, V.; Krajnik, T.; Preucil, L. [http://eprints.lincoln.ac.uk/14891/1/formations_2014_IJRR.pdf Coordination and Navigation of Heterogeneous MAV–UGV Formations Localized by a ‘hawk-eye’-like Approach Under a Model Predictive Control Scheme]. International Journal of Robotics Research 33(10):1393–1412, September 2014.</ref> and moving target localization and tracking.<ref>Kwon, H; Pack, D. J. [https://link.springer.com/article/10.1007/s10846-011-9581-5 A Robust Mobile Target Localization Method for Cooperative Unmanned Aerial Vehicles Using Sensor Fusion Quality]. Journal of Intelligent and Robotic Systems, Volume 65, Issue 1, pp 479-493, January 2012.</ref>
第110行: 第110行:  
Another large set of applications may be solved using swarms of micro air vehicles, which are also broadly investigated nowadays.  In comparison with the pioneering studies of swarms of flying robots using precise motion capture systems in laboratory conditions, current systems such as Shooting Star can control teams of hundreds of micro aerial vehicles in outdoor environment using GNSS systems (such as GPS) or even  stabilize them using onboard localization systems where GPS is unavailable.  Swarms of micro aerial vehicles have been already tested in tasks of autonomous surveillance, plume tracking, and reconnaissance in a compact phalanx.  Numerous works on cooperative swarms of unmanned ground and aerial vehicles have been conducted with target applications of cooperative environment monitoring, simultaneous localization and mapping, convoy protection, and moving target localization and tracking.
 
Another large set of applications may be solved using swarms of micro air vehicles, which are also broadly investigated nowadays.  In comparison with the pioneering studies of swarms of flying robots using precise motion capture systems in laboratory conditions, current systems such as Shooting Star can control teams of hundreds of micro aerial vehicles in outdoor environment using GNSS systems (such as GPS) or even  stabilize them using onboard localization systems where GPS is unavailable.  Swarms of micro aerial vehicles have been already tested in tasks of autonomous surveillance, plume tracking, and reconnaissance in a compact phalanx.  Numerous works on cooperative swarms of unmanned ground and aerial vehicles have been conducted with target applications of cooperative environment monitoring, simultaneous localization and mapping, convoy protection, and moving target localization and tracking.
   −
使用微型飞行器集群可以解决另一套广泛的应用,这在当今也得到了广泛的研究。在实验室条件下,相比较于使用精密运动捕捉系统对飞行机器集群进行开创性研究,当前的系统(例如射星系统),则可以使用GNSS全球导航卫星系统(例如GPS全球定位系统)在室外环境中控制数百辆微型飞机的集群,甚至可以使用GPS无法做到的机载定位系统来稳定它们。成群的微型飞行器已经可以在密集方阵中进行自主监视、羽毛跟踪以及侦察任务中进行测试。在协同无人驾驶地面和空中飞行器集群的大量工作中,已经涉及应用包括了:协同环境监测、即时定位与制图、车队保护、运动目标定位以及跟踪。
+
通过集群飞行器还可以解决另一大类应用,该主题目前也得到了非常广泛的研究。在实验室条件下,相比较于过去使用的精密运动捕捉系统对飞行机器集群进行开创性研究,当前的系统(例如射星系统)则可以使用'''<font color="#ff8000"> GNSS全球导航卫星系统/font>'''(例如GPS全球定位系统)在室外环境条件下,控制数百台微型飞机集群,甚至可以使用GPS无法做到的机载定位系统来稳定它们。成群的微型飞行器已经可以在密集方阵中进行自主监视、羽毛跟踪以及侦察任务中进行测试。在协同无人驾驶地面和空中飞行器集群的大量工作中,已经涉及的应用包括:协同环境监测、即时定位与制图、车队保护、运动目标定位以及跟踪。
    
== Drone displays 无人机显示器 ==
 
== Drone displays 无人机显示器 ==
961

个编辑

导航菜单