更改

跳到导航 跳到搜索
添加786字节 、 2020年8月21日 (五) 21:19
无编辑摘要
第454行: 第454行:  
==Contexts and applications==<!--if you change this section's title, please also change the wikilinks throughout the article that link to it! -->
 
==Contexts and applications==<!--if you change this section's title, please also change the wikilinks throughout the article that link to it! -->
   −
==Contexts and applications==<!--if you change this section's title, please also change the wikilinks throughout the article that link to it! -->
+
==Contexts and applications 语境和应用==<!--if you change this section's title, please also change the wikilinks throughout the article that link to it! -->
    
= = 上下文和应用 = = < ! ——如果你更改了这个部分的标题,请也更改文章中链接到它的 wikileink!-->
 
= = 上下文和应用 = = < ! ——如果你更改了这个部分的标题,请也更改文章中链接到它的 wikileink!-->
第462行: 第462行:  
According to Kulish, V. V. (2002), almost every system of organization applied to the world is arranged hierarchically. By their common definitions, every nation has a government and every government is hierarchical. Socioeconomic systems are stratified into a social hierarchy (the social stratification of societies), and all systematic classification schemes (taxonomies) are hierarchical. Most organized religions, regardless of their internal governance structures, operate as a hierarchy under God. Many Christian denominations have an autocephalous ecclesiastical hierarchy of leadership. Families are viewed as a hierarchical structure in terms of cousinship (e.g., first cousin once removed, second cousin, etc.), ancestry (as depicted in a family tree) and inheritance (succession and heirship). All the requisites of a well-rounded life and lifestyle can be organized using Maslow's hierarchy of human needs. Learning must often follow a hierarchical scheme—to learn differential equations one must first learn calculus; to learn calculus one must first learn elementary algebra; and so on. Even nature itself has its own hierarchies, as numerous schemes such as Linnaean taxonomy, the organization of life, and biomass pyramids attempt to document. Hierarchies are so infused into daily life that they are viewed as trivial.
 
According to Kulish, V. V. (2002), almost every system of organization applied to the world is arranged hierarchically. By their common definitions, every nation has a government and every government is hierarchical. Socioeconomic systems are stratified into a social hierarchy (the social stratification of societies), and all systematic classification schemes (taxonomies) are hierarchical. Most organized religions, regardless of their internal governance structures, operate as a hierarchy under God. Many Christian denominations have an autocephalous ecclesiastical hierarchy of leadership. Families are viewed as a hierarchical structure in terms of cousinship (e.g., first cousin once removed, second cousin, etc.), ancestry (as depicted in a family tree) and inheritance (succession and heirship). All the requisites of a well-rounded life and lifestyle can be organized using Maslow's hierarchy of human needs. Learning must often follow a hierarchical scheme—to learn differential equations one must first learn calculus; to learn calculus one must first learn elementary algebra; and so on. Even nature itself has its own hierarchies, as numerous schemes such as Linnaean taxonomy, the organization of life, and biomass pyramids attempt to document. Hierarchies are so infused into daily life that they are viewed as trivial.
   −
根据 Kulish v. v. (2002) 的研究,几乎世界上所有的组织系统都是等级分明的。按照他们的共同定义,每个国家都有一个政府,每个政府都是层级制度。社会经济系统被划分为一个社会层级(社会阶层) ,所有的系统分类方案(分类法)都是分等级的。大多数有组织的宗教,不管它们的内部管理结构如何,都在上帝之下按照层级运作。许多基督教教派都有一个独立的教会领导层次。从表亲关系(例如,第一代表兄弟,第二代表兄弟等等)、祖先(由家谱描述)和继承(继承和继承权)的角度来看,家庭可以看作是一种等级结构。一个全面的生活和生活方式的所有必需品都可以用马斯洛的人类需求层次理论来组织。学习通常必须遵循一个层次框架——学习微分方程必须先学习微积分;学习微积分必须先学习初等代数等等。甚至自然本身也有它自己的层级,许多方案试图记录下来,例如林奈分类学、生命的组织和生物量金字塔。层级制度如此深入到日常生活中,以至于人们认为它们微不足道。
+
根据 Kulish v. v. (2002) 的研究,几乎世界上所有的组织系统都是等级分明的。按照他们的共同定义,每个<font color="#ff8000">国家 nation</font>都有一个政府,每个政府都是层级制度。社会经济系统被划分为一个社会层级(<font color="#ff8000">社会阶层 social stratification</font>) ,所有的系统分类方案(分类法)都是分等级的。大多数有组织的宗教,不管它们的内部管理结构如何,都在上帝之下按照层级运作。许多<font color="#ff8000">基督教教派 Christian denominations</font>都有一个独立的教会领导层次。从表亲关系(例如,第一代表兄弟,第二代表兄弟等等)、祖先(由<font color="#ff8000">家谱 family tree</font>描述)和继承(继承和继承权)的角度来看,家庭可以看作是一种等级结构。一个全面的生活和生活方式的所有必需品都可以用<font color="#ff8000">马斯洛人类需求层次 Maslow's hierarchy of human needs</font>来组织。学习通常必须遵循一个层次框架——学习微分方程必须先学习微积分;学习微积分必须先学习初等代数等等。甚至自然本身也有它自己的层级,许多方案试图记录下来,例如林奈分类学、生命的组织和生物量金字塔。层级制度如此深入到日常生活中,以至于人们认为它们微不足道。
      第470行: 第470行:  
While the above examples are often clearly depicted in a hierarchical form and are classic examples, hierarchies exist in numerous systems where this branching structure is not immediately apparent. For example, most postal code systems are hierarchical. Using the Canadian postal code system as an example, the top level's binding concept is the "postal district", and consists of 18 objects (letters). The next level down is the "zone", where the objects are the digits 0–9. This is an example of an overlapping hierarchy, because each of these 10 objects has 18 parents. The hierarchy continues downward to generate, in theory, 7,200,000 unique codes of the format A0A 0A0 (the second and third letter position allow 20 objects each). Most library classification systems are also hierarchical. The Dewey Decimal System is regarded as infinitely hierarchical because there is no finite bound on the number of digits can be used after the decimal point.
 
While the above examples are often clearly depicted in a hierarchical form and are classic examples, hierarchies exist in numerous systems where this branching structure is not immediately apparent. For example, most postal code systems are hierarchical. Using the Canadian postal code system as an example, the top level's binding concept is the "postal district", and consists of 18 objects (letters). The next level down is the "zone", where the objects are the digits 0–9. This is an example of an overlapping hierarchy, because each of these 10 objects has 18 parents. The hierarchy continues downward to generate, in theory, 7,200,000 unique codes of the format A0A 0A0 (the second and third letter position allow 20 objects each). Most library classification systems are also hierarchical. The Dewey Decimal System is regarded as infinitely hierarchical because there is no finite bound on the number of digits can be used after the decimal point.
   −
虽然上面的例子通常以层次形式清楚地描述并且很经典,但是层次结构也存在于许多分支结构并不是很明显的系统中。例如,大多数邮政编码系统是分层的。以加拿大邮政编码系统为例,顶层的概念是“邮区 postal district”,由18个对象(字母)组成。下一层是“地区 zone”,其中的对象是数字0-9。这是重叠层次结构的一个例子,因为这10个对象中的每一个都有18个父对象。层次继续向下生成,理论上存在720万个 A0A 0A0 (第二个和第三个字母的位置每个允许20个对象)格式的唯一代码。大多数图书分类法系统也是分层级的。杜威十进制图书分类法被认为是无限层次的,因为在小数点之后可以使用的数字数量是没有限制的。
+
虽然上面的例子通常以层次形式清楚地描述并且很经典,但是层次结构也存在于许多分支结构并不是很明显的系统中。例如,大多数<font color="#ff8000">邮政编码 postal code</font>系统是分层的。以加拿大邮政编码系统为例,顶层的概念是“<font color="#ff8000">邮区 postal district</font>”,由18个对象(字母)组成。下一层是“<font color="#ff8000">地区 zone</font>”,其中的对象是数字0-9。这是重叠层次结构的一个例子,因为这10个对象中的每一个都有18个父对象。层次继续向下生成,理论上存在720万个 A0A 0A0 (第二个和第三个字母的位置每个允许20个对象)格式的唯一代码。大多数图书分类法系统也是分层级的。<font color="#ff8000">杜威十进制图书分类法 Dewey Decimal System</font>被认为是无限层次的,因为在小数点之后可以使用的数字数量是没有限制的。
      第478行: 第478行:  
organizational hierarchy depicted in the form of a tree. Diagrams like this are called organizational charts.]]
 
organizational hierarchy depicted in the form of a tree. Diagrams like this are called organizational charts.]]
   −
以树的形式描述的组织层次结构。这样的图被称为组织结构图。
+
以树的形式描述的组织层次结构。这样的图被称为<font color="#ff8000">组织结构图 organizational charts</font>。
      第492行: 第492行:  
Organizations can be structured as a dominance hierarchy. In an organizational hierarchy, there is a single person or group with the most power and authority, and each subsequent level represents a lesser authority. Most organizations are structured in this manner, including governments, companies, militia and organized religions. The units or persons within an organization are depicted hierarchically in an organizational chart.
 
Organizations can be structured as a dominance hierarchy. In an organizational hierarchy, there is a single person or group with the most power and authority, and each subsequent level represents a lesser authority. Most organizations are structured in this manner, including governments, companies, militia and organized religions. The units or persons within an organization are depicted hierarchically in an organizational chart.
   −
组织可以被构建成一个<font color="#32CD32">支配等级 dominance hierarchy</font>。在一个组织的层次结构中,有一个人或一个群体拥有最大的权力和权威,每个后续的层次代表一个较小的权威。大多数组织都是这样构建的,包括政府、公司、民兵和有组织的宗教。组织中的单位或人员在组织结构图中按等级进行描述。
+
<font color="#ff8000">组织 Organizations</font>可以被构建成一个<font color="#32CD32">支配等级 dominance hierarchy</font>。在一个组织的层次结构中,有一个人或一个群体拥有最大的权力和权威,每个后续的层次代表一个较小的权威。大多数组织都是这样构建的,包括政府、公司、民兵和有组织的宗教。组织中的单位或人员在组织结构图中按等级进行描述。
      第518行: 第518行:  
The theoretical foundations are summarized by Thermodynamics. When biological systems are modeled as physical systems, in its most general abstraction, they are thermodynamic open systems that exhibit self-organised behavior, and the set/subset relations between dissipative structures can be characterized in a hierarchy.
 
The theoretical foundations are summarized by Thermodynamics. When biological systems are modeled as physical systems, in its most general abstraction, they are thermodynamic open systems that exhibit self-organised behavior, and the set/subset relations between dissipative structures can be characterized in a hierarchy.
   −
这些理论基础由热力学的方法来总结。当生物系统被模拟为物理系统时,在其最一般的抽象中,它们是表现出自组织行为的热力学开放系统,耗散结构之间的集合/子集关系可以用层次来刻画。
+
这些理论基础由热力学的方法来总结。当生物系统被模拟为物理系统时,在其最一般的抽象中,它们是表现出自组织行为的热力学开放系统,<font color="#ff8000">耗散结构 dissipative structures</font>之间的集合/子集关系可以用层次来刻画。
    
===Computer graphic imaging 计算机图形成像===
 
===Computer graphic imaging 计算机图形成像===
第528行: 第528行:  
CGI and computer animation programs mostly use hierarchies for models. On a 3D model of a human for example, the chest is a parent of the upper left arm, which is a parent of the lower left arm, which is a parent of the hand. This is used in modeling and animation for almost everything built as a 3D digital model.
 
CGI and computer animation programs mostly use hierarchies for models. On a 3D model of a human for example, the chest is a parent of the upper left arm, which is a parent of the lower left arm, which is a parent of the hand. This is used in modeling and animation for almost everything built as a 3D digital model.
   −
CGI 和计算机动画程序大多使用层次结构建模。例如在一个人体的三维模型中,胸部是左上臂的母体,而左上臂是左下臂的母体。层次结构用于几乎所有三维数字模型的建模和动画。
+
CGI 和<font color="#ff8000">计算机动画程序 computer animation programs</font>大多使用层次结构建模。例如在一个人体的三维模型中,胸部是左上臂的母体,而左上臂是左下臂的母体。层次结构用于几乎所有三维数字模型的建模和动画。
    
===Linguistics 语言学===
 
===Linguistics 语言学===
第568行: 第568行:  
The structure of a musical composition is often understood hierarchically (for example by Heinrich Schenker (1768–1835, see Schenkerian analysis), and in the (1985) Generative Theory of Tonal Music, by composer Fred Lerdahl and linguist Ray Jackendoff). The sum of all notes in a piece is understood to be an all-inclusive surface, which can be reduced to successively more sparse and more fundamental types of motion. The levels of structure that operate in Schenker's theory are the foreground, which is seen in all the details of the musical score; the middle ground, which is roughly a summary of an essential contrapuntal progression and voice-leading; and the background or Ursatz, which is one of only a few basic "long-range counterpoint" structures that are shared in the gamut of tonal music literature.
 
The structure of a musical composition is often understood hierarchically (for example by Heinrich Schenker (1768–1835, see Schenkerian analysis), and in the (1985) Generative Theory of Tonal Music, by composer Fred Lerdahl and linguist Ray Jackendoff). The sum of all notes in a piece is understood to be an all-inclusive surface, which can be reduced to successively more sparse and more fundamental types of motion. The levels of structure that operate in Schenker's theory are the foreground, which is seen in all the details of the musical score; the middle ground, which is roughly a summary of an essential contrapuntal progression and voice-leading; and the background or Ursatz, which is one of only a few basic "long-range counterpoint" structures that are shared in the gamut of tonal music literature.
   −
音乐作品的结构通常是按层次来理解的(例如 Heinrich Schenker (1768-1835,见 Schenkerian 分析) ,以及 Fred Lerdahl 和语言学家 Ray Jackendoff 1985年的《调性音乐的生成理论》)。一段乐曲中所有音符的总和被理解为一个包含所有音符的曲面,它可以简化为更加稀疏和更加基本的运动类型。在申克的理论中运作的结构层次包括前景层次,这在音乐乐谱的所有细节中都可以看到;中间层次,大致上是对位进行和主音的总结; 背景层次,即 Ursatz,这是调性音乐著作中仅有的几个共享的基本“远距离对位”结构之一。
+
音乐作品的结构通常是按层次来理解的(例如 Heinrich Schenker (1768-1835,见 Schenkerian 分析) ,以及 Fred Lerdahl 和语言学家 Ray Jackendoff 1985年的《<font color="#ff8000">调性音乐的生成理论 Generative Theory of Tonal Music</font>》)。一段乐曲中所有音符的总和被理解为一个包含所有音符的曲面,它可以简化为更加稀疏和更加基本的运动类型。在申克的理论中运作的结构层次包括前景层次,这在音乐乐谱的所有细节中都可以看到;中间层次,大致上是对位进行和主音的总结; 背景层次,即 Ursatz,这是调性音乐著作中仅有的几个共享的基本“远距离对位”结构之一。
      第576行: 第576行:  
The pitches and form of tonal music are organized hierarchically, all pitches deriving their importance from their relationship to a tonic key, and secondary themes in other keys are brought back to the tonic in a recapitulation of the primary theme. Susan McClary connects this specifically in the sonata-allegro form to the feminist hierarchy of gender (see above) in her book Feminine Endings, even pointing out that primary themes were often previously called "masculine" and secondary themes "feminine."
 
The pitches and form of tonal music are organized hierarchically, all pitches deriving their importance from their relationship to a tonic key, and secondary themes in other keys are brought back to the tonic in a recapitulation of the primary theme. Susan McClary connects this specifically in the sonata-allegro form to the feminist hierarchy of gender (see above) in her book Feminine Endings, even pointing out that primary themes were often previously called "masculine" and secondary themes "feminine."
   −
调性音乐的音高和形式是按等级组织的,所有音高的重要性来自于它们与主调的关系,其他调中的次要主题在主要主题的再现中被带回主调。苏珊·麦克拉里(Susan McClary)在她的《女性结局((Feminine Endings)一书中将这一点在奏鸣曲式中具体地与女性主义的性别层次结构(见上文)联系起来,甚至指出,主要的主题通常以前被称为“阳性” ,而次要主题被称为“阴性”。
+
<font color="#ff8000">调性音乐 tonal music</font>的<font color="#ff8000">音高 pitches</font>和形式是按等级组织的,所有音高的重要性来自于它们与<font color="#ff8000">主调 tonic key</font>的关系,其他调中的次要主题在主要主题的再现中被带回主调。苏珊·麦克拉里(Susan McClary)在她的《女性结局((Feminine Endings)一书中将这一点在奏鸣曲式中具体地与女性主义的性别层次结构(见上文)联系起来,甚至指出,主要的主题通常以前被称为“阳性” ,而次要主题被称为“阴性”。
    
==Criticisms of views, concerning distinctions of type and categories well as distinguishability 关于类型和范畴的区别以及区别性的观点的批判==
 
==Criticisms of views, concerning distinctions of type and categories well as distinguishability 关于类型和范畴的区别以及区别性的观点的批判==
320

个编辑

导航菜单