更改

跳到导航 跳到搜索
添加313字节 、 2020年8月23日 (日) 13:57
无编辑摘要
第977行: 第977行:  
* The upper tail probability can be tightened (by a factor of at least two) as follows:{{r|Short2013}}
 
* The upper tail probability can be tightened (by a factor of at least two) as follows:{{r|Short2013}}
    +
*长尾概率可被收紧(至少两倍)如下:{{r|Short2013}}
 
:: <math> P(X \geq x) \leq \frac{e^{-\operatorname{D}_{\text{KL}}(x\mid\lambda)}}{\max{(2, \sqrt{4\pi\operatorname{D}_{\text{KL}}(x\mid\lambda)}})}, \text{ for } x > \lambda,</math>
 
:: <math> P(X \geq x) \leq \frac{e^{-\operatorname{D}_{\text{KL}}(x\mid\lambda)}}{\max{(2, \sqrt{4\pi\operatorname{D}_{\text{KL}}(x\mid\lambda)}})}, \text{ for } x > \lambda,</math>
   第982行: 第983行:     
< math > p (x geq x) leq frac { e ^ {-operatorname { d }{ text { KL }(x mid lambda)}}{ max {(2,sqrt {4 pi operatorname { d }{ text { KL }(x mid lambda)}}}}) ,text { for } x > lambda,</math >  
 
< math > p (x geq x) leq frac { e ^ {-operatorname { d }{ text { KL }(x mid lambda)}}{ max {(2,sqrt {4 pi operatorname { d }{ text { KL }(x mid lambda)}}}}) ,text { for } x > lambda,</math >  
        第995行: 第995行:  
* Inequalities that relate the distribution function of a Poisson random variable <math> X \sim \operatorname{Pois}(\lambda)</math> to the [[Standard normal distribution]] function <math> \Phi(x) </math> are as follows:{{r|Short2013}}
 
* Inequalities that relate the distribution function of a Poisson random variable <math> X \sim \operatorname{Pois}(\lambda)</math> to the [[Standard normal distribution]] function <math> \Phi(x) </math> are as follows:{{r|Short2013}}
   −
 
+
*关于泊松随机变量分布函数的不等式 <math> X \sim \operatorname{Pois}(\lambda)</math>对 标准正态分布函数<math> \Phi(x) </math> are as follows:{{r|Short2013}}
    
:: <math> \Phi\left(\operatorname{sign}(k-\lambda)\sqrt{2\operatorname{D}_{\text{KL}}(k\mid\lambda)}\right) < P(X \leq k) < \Phi\left(\operatorname{sign}(k-\lambda+1)\sqrt{2\operatorname{D}_{\text{KL}}(k+1\mid\lambda)}\right), \text{ for } k > 0,</math>
 
:: <math> \Phi\left(\operatorname{sign}(k-\lambda)\sqrt{2\operatorname{D}_{\text{KL}}(k\mid\lambda)}\right) < P(X \leq k) < \Phi\left(\operatorname{sign}(k-\lambda+1)\sqrt{2\operatorname{D}_{\text{KL}}(k+1\mid\lambda)}\right), \text{ for } k > 0,</math>
第1,013行: 第1,013行:       −
=== Poisson races ===
+
=== Poisson races 泊松族群===
      第1,061行: 第1,061行:       −
== Related distributions ==
+
== '''<font color="#ff8000"> 相关分布'Related distributions</font>''==
   −
===General===
+
===Genera通常l===
    
* If <math>X_1 \sim \mathrm{Pois}(\lambda_1)\,</math> and <math>X_2 \sim \mathrm{Pois}(\lambda_2)\,</math> are independent, then the difference <math> Y = X_1 - X_2</math> follows a [[Skellam distribution]].
 
* If <math>X_1 \sim \mathrm{Pois}(\lambda_1)\,</math> and <math>X_2 \sim \mathrm{Pois}(\lambda_2)\,</math> are independent, then the difference <math> Y = X_1 - X_2</math> follows a [[Skellam distribution]].
第1,098行: 第1,098行:     
* The Poisson distribution is a [[special case]] of the discrete compound Poisson distribution (or stuttering Poisson distribution) with only a parameter.{{r|Zhang2013|Zhang2016}} The discrete compound Poisson distribution can be deduced from the limiting distribution of univariate multinomial distribution. It is also a [[compound Poisson distribution#Special cases|special case]] of a [[compound Poisson distribution]].
 
* The Poisson distribution is a [[special case]] of the discrete compound Poisson distribution (or stuttering Poisson distribution) with only a parameter.{{r|Zhang2013|Zhang2016}} The discrete compound Poisson distribution can be deduced from the limiting distribution of univariate multinomial distribution. It is also a [[compound Poisson distribution#Special cases|special case]] of a [[compound Poisson distribution]].
 
+
*
 
* For sufficiently large values of λ, (say λ>1000), the [[normal distribution]] with mean λ and variance λ (standard deviation <math>\sqrt{\lambda}</math>) is an excellent approximation to the Poisson distribution. If λ is greater than about 10, then the normal distribution is a good approximation if an appropriate [[continuity correction]] is performed, i.e., if P(''X''&nbsp;≤&nbsp;''x''), where ''x'' is a non-negative integer, is replaced by P(''X''&nbsp;≤&nbsp;''x''&nbsp;+&nbsp;0.5).
 
* For sufficiently large values of λ, (say λ>1000), the [[normal distribution]] with mean λ and variance λ (standard deviation <math>\sqrt{\lambda}</math>) is an excellent approximation to the Poisson distribution. If λ is greater than about 10, then the normal distribution is a good approximation if an appropriate [[continuity correction]] is performed, i.e., if P(''X''&nbsp;≤&nbsp;''x''), where ''x'' is a non-negative integer, is replaced by P(''X''&nbsp;≤&nbsp;''x''&nbsp;+&nbsp;0.5).
  
561

个编辑

导航菜单