更改

跳到导航 跳到搜索
添加958字节 、 2020年8月23日 (日) 20:08
无编辑摘要
第932行: 第932行:       −
=== Sums of Poisson-distributed random variables ===
+
=== Sums of Poisson-distributed random variables 泊松分布随机变量和===
    
: If <math>X_i \sim \operatorname{Pois}(\lambda_i)</math> for <math>i=1,\dotsc,n</math> are [[statistical independence|independent]], then <math>\sum_{i=1}^n X_i \sim \operatorname{Pois}\left(\sum_{i=1}^n \lambda_i\right)</math>.{{r|Lehmann1986|p=65}} A converse is [[Raikov's theorem]], which says that if the sum of two independent random variables is Poisson-distributed, then so are each of those two independent random variables.{{r|Raikov1937}}{{r|vonMises1964|p=}}
 
: If <math>X_i \sim \operatorname{Pois}(\lambda_i)</math> for <math>i=1,\dotsc,n</math> are [[statistical independence|independent]], then <math>\sum_{i=1}^n X_i \sim \operatorname{Pois}\left(\sum_{i=1}^n \lambda_i\right)</math>.{{r|Lehmann1986|p=65}} A converse is [[Raikov's theorem]], which says that if the sum of two independent random variables is Poisson-distributed, then so are each of those two independent random variables.{{r|Raikov1937}}{{r|vonMises1964|p=}}
第958行: 第958行:     
* Bounds for the tail probabilities of a Poisson random variable <math> X \sim \operatorname{Pois}(\lambda)</math> can be derived using a [[Chernoff bound]] argument.{{r|Mitzenmacher2005|p=97-98}}
 
* Bounds for the tail probabilities of a Poisson random variable <math> X \sim \operatorname{Pois}(\lambda)</math> can be derived using a [[Chernoff bound]] argument.{{r|Mitzenmacher2005|p=97-98}}
 
+
*泊松随机变量尾概率的界<math> X \sim \operatorname{Pois}(\lambda)</math> 可以用[['''<font color="#ff8000"> 切诺夫界Chernoff bound</font>''']]参数派生{{r|Mitzenmacher2005|p=97-98}}
 
:: <math> P(X \geq x) \leq \frac{(e \lambda)^x e^{-\lambda}}{x^x}, \text{ for } x > \lambda</math>,
 
:: <math> P(X \geq x) \leq \frac{(e \lambda)^x e^{-\lambda}}{x^x}, \text{ for } x > \lambda</math>,
   第995行: 第995行:  
* Inequalities that relate the distribution function of a Poisson random variable <math> X \sim \operatorname{Pois}(\lambda)</math> to the [[Standard normal distribution]] function <math> \Phi(x) </math> are as follows:{{r|Short2013}}
 
* Inequalities that relate the distribution function of a Poisson random variable <math> X \sim \operatorname{Pois}(\lambda)</math> to the [[Standard normal distribution]] function <math> \Phi(x) </math> are as follows:{{r|Short2013}}
   −
*关于泊松随机变量分布函数的不等式 <math> X \sim \operatorname{Pois}(\lambda)</math>标准正态分布函数<math> \Phi(x) </math> are as follows:{{r|Short2013}}
+
*关于泊松随机变量分布函数的不等式 <math> X \sim \operatorname{Pois}(\lambda)</math>标准正态分布函数<math> \Phi(x) </math> 如下:{{r|Short2013}}
    
:: <math> \Phi\left(\operatorname{sign}(k-\lambda)\sqrt{2\operatorname{D}_{\text{KL}}(k\mid\lambda)}\right) < P(X \leq k) < \Phi\left(\operatorname{sign}(k-\lambda+1)\sqrt{2\operatorname{D}_{\text{KL}}(k+1\mid\lambda)}\right), \text{ for } k > 0,</math>
 
:: <math> \Phi\left(\operatorname{sign}(k-\lambda)\sqrt{2\operatorname{D}_{\text{KL}}(k\mid\lambda)}\right) < P(X \leq k) < \Phi\left(\operatorname{sign}(k-\lambda+1)\sqrt{2\operatorname{D}_{\text{KL}}(k+1\mid\lambda)}\right), \text{ for } k > 0,</math>
第1,049行: 第1,049行:  
The upper bound is proved using a standard Chernoff bound.
 
The upper bound is proved using a standard Chernoff bound.
   −
利用标准的 Chernoff 界证明了上界的存在性。
+
利用标准的'''<font color="#ff8000"> 切诺夫界Chernoff bound</font>'''证明了上界的存在性。
      第1,098行: 第1,098行:     
* The Poisson distribution is a [[special case]] of the discrete compound Poisson distribution (or stuttering Poisson distribution) with only a parameter.{{r|Zhang2013|Zhang2016}} The discrete compound Poisson distribution can be deduced from the limiting distribution of univariate multinomial distribution. It is also a [[compound Poisson distribution#Special cases|special case]] of a [[compound Poisson distribution]].
 
* The Poisson distribution is a [[special case]] of the discrete compound Poisson distribution (or stuttering Poisson distribution) with only a parameter.{{r|Zhang2013|Zhang2016}} The discrete compound Poisson distribution can be deduced from the limiting distribution of univariate multinomial distribution. It is also a [[compound Poisson distribution#Special cases|special case]] of a [[compound Poisson distribution]].
*
+
*这一泊松分布是离散复合泊松分布(或断续泊松分布)在只有一个参数情况下的[[特殊情形]] 。{{r|Zhang2013|Zhang2016}}离散复合泊松分布可由一元多项式分布的极限分布导出。同时它也是[[复合泊松分布#特殊情况]] 复合泊松分布的一个特例。
 +
 
 
* For sufficiently large values of λ, (say λ>1000), the [[normal distribution]] with mean λ and variance λ (standard deviation <math>\sqrt{\lambda}</math>) is an excellent approximation to the Poisson distribution. If λ is greater than about 10, then the normal distribution is a good approximation if an appropriate [[continuity correction]] is performed, i.e., if P(''X''&nbsp;≤&nbsp;''x''), where ''x'' is a non-negative integer, is replaced by P(''X''&nbsp;≤&nbsp;''x''&nbsp;+&nbsp;0.5).
 
* For sufficiently large values of λ, (say λ>1000), the [[normal distribution]] with mean λ and variance λ (standard deviation <math>\sqrt{\lambda}</math>) is an excellent approximation to the Poisson distribution. If λ is greater than about 10, then the normal distribution is a good approximation if an appropriate [[continuity correction]] is performed, i.e., if P(''X''&nbsp;≤&nbsp;''x''), where ''x'' is a non-negative integer, is replaced by P(''X''&nbsp;≤&nbsp;''x''&nbsp;+&nbsp;0.5).
 +
*对于足够大的值λ,(如 λ>1000),具有均值 λ 的正态分布与变量 λ (标准差 <math>\sqrt{\lambda}</math>),是泊松分布的完美近似。如果 λ 大于10,则正态分布在适当的校正下可近似模拟,例如如果P(''X''&nbsp;≤&nbsp;''x''),''x'' 为非负整数,则将其改为P(''X''&nbsp;≤&nbsp;''x''&nbsp;+&nbsp;0.5)。
    
:: <math>F_\mathrm{Poisson}(x;\lambda) \approx F_\mathrm{normal}(x;\mu=\lambda,\sigma^2=\lambda)\,</math>
 
:: <math>F_\mathrm{Poisson}(x;\lambda) \approx F_\mathrm{normal}(x;\mu=\lambda,\sigma^2=\lambda)\,</math>
第1,134行: 第1,136行:     
* If for every ''t''&nbsp;>&nbsp;0 the number of arrivals in the time interval [0,&nbsp;''t''] follows the Poisson distribution with mean ''λt'', then the sequence of inter-arrival times are independent and identically distributed [[exponential distribution|exponential]] random variables having mean&nbsp;1/''λ''.{{r|Ross2010|p=317–319}}
 
* If for every ''t''&nbsp;>&nbsp;0 the number of arrivals in the time interval [0,&nbsp;''t''] follows the Poisson distribution with mean ''λt'', then the sequence of inter-arrival times are independent and identically distributed [[exponential distribution|exponential]] random variables having mean&nbsp;1/''λ''.{{r|Ross2010|p=317–319}}
 +
 +
*
    
* The [[cumulative distribution function]]s of the Poisson and [[chi-squared distribution]]s are related in the following ways:{{r|Johnson2005|p=167}}
 
* The [[cumulative distribution function]]s of the Poisson and [[chi-squared distribution]]s are related in the following ways:{{r|Johnson2005|p=167}}
561

个编辑

导航菜单