更改

跳到导航 跳到搜索
添加36字节 、 2020年8月26日 (三) 10:26
第248行: 第248行:  
The oriented incidence matrix of an undirected graph is the incidence matrix, in the sense of directed graphs, of any orientation of the graph. That is, in the column of edge e, there is one 1 in the row corresponding to one vertex of e and one −1 in the row corresponding to the other vertex of e, and all other rows have 0. The oriented incidence matrix is unique up to negation of any of the columns, since negating the entries of a column corresponds to reversing the orientation of an edge.
 
The oriented incidence matrix of an undirected graph is the incidence matrix, in the sense of directed graphs, of any orientation of the graph. That is, in the column of edge e, there is one 1 in the row corresponding to one vertex of e and one −1 in the row corresponding to the other vertex of e, and all other rows have 0. The oriented incidence matrix is unique up to negation of any of the columns, since negating the entries of a column corresponds to reversing the orientation of an edge.
   −
无向图的有向关联矩阵是无向图的有向关联矩阵,在有向图的意义上是无向图的任何方向。也就是说,在 e 边的列中,对应 e 的一个顶点的行中有一个1,对应 e 的另一个顶点的行中有一个 -1,而所有其他行都有0。方向关联矩阵是唯一的,直到否定任何列,因为否定列的条目相当于反转边的方向。
+
无向图的有向关联矩阵在有向图的意义上是图的任何方向的关联矩阵。也就是说,在边e的列中,对应于e的一个顶点的行中有一个1,对应于e的另一个顶点的行中有一个−1,所有其他行都有0。定向关联矩阵是唯一的,直到任何列取反为止,因为对列中的条目求反对应于反转边的方向。
 
        第256行: 第255行:  
The unoriented incidence matrix of a graph G is related to the adjacency matrix of its line graph L(G) by the following theorem:
 
The unoriented incidence matrix of a graph G is related to the adjacency matrix of its line graph L(G) by the following theorem:
   −
g 的无向关联矩阵与其线图 l (g)的邻接矩阵有以下定理关系:
+
''G''的无向关联矩阵与其'''<font color="#ff8000">线图 Line Graph</font>'''''L''(''G'')的邻接矩阵有以下定理关系:
    
: <math>A(L(G)) = B(G)^\textsf{T}B(G) - 2I_m.</math>
 
: <math>A(L(G)) = B(G)^\textsf{T}B(G) - 2I_m.</math>
274

个编辑

导航菜单