更改

跳到导航 跳到搜索
添加4,438字节 、 2020年9月20日 (日) 05:10
无编辑摘要
第148行: 第148行:     
Jean le Rond d'Alembert and Alexis Clairaut, who developed a longstanding rivalry, both attempted to analyze the problem in some degree of generality; they submitted their competing first analyses to the Académie Royale des Sciences in 1747.[21] It was in connection with their research, in Paris during the 1740s, that the name "three-body problem" (French: Problème des trois Corps) began to be commonly used. An account published in 1761 by Jean le Rond d'Alembert indicates that the name was first used in 1747.
 
Jean le Rond d'Alembert and Alexis Clairaut, who developed a longstanding rivalry, both attempted to analyze the problem in some degree of generality; they submitted their competing first analyses to the Académie Royale des Sciences in 1747.[21] It was in connection with their research, in Paris during the 1740s, that the name "three-body problem" (French: Problème des trois Corps) began to be commonly used. An account published in 1761 by Jean le Rond d'Alembert indicates that the name was first used in 1747.
 +
 +
建立了长期竞争关系的Jean le Rond d'Alembert和Alexis Clairaut都试图以某种普遍性来分析该问题。他们于1747年向皇家科学研究院提交了他们的第一批竞争分析。这些都与他们的研究有关,在1740年代的巴黎,“三体问题”(法语:Problèmedes trois Corps)这个名字开始了被普遍使用。Jean le Rond d'Alembert于1761年发布的文章表明该名称最早于1747年使用。
 +
 +
 +
==其他涉及三体的问题==
 +
 +
The term 'three-body problem' is sometimes used in the more general sense to refer to any physical problem involving the interaction of three bodies.
 +
三体问题这个术语有时用在更一般的意义上来指涉及三个物体相互作用的任何物理问题。
 +
 +
A quantum mechanical analogue of the gravitational three-body problem in classical mechanics is the helium atom, in which a helium nucleus and two electrons interact according to the inverse-square Coulomb interaction. Like the gravitational three-body problem, the helium atom cannot be solved exactly.[23]
 +
 +
古典力学中的引力三体问题的量子力学类似物是氦原子,其中氦原子核和两个电子根据平方反 库仑相互作用而相互作用。像重力三体问题一样,氦原子不能精确地求解。
 +
 +
In both classical and quantum mechanics, however, there exist nontrivial interaction laws besides the inverse-square force which do lead to exact analytic three-body solutions. One such model consists of a combination of harmonic attraction and a repulsive inverse-cube force.[24] This model is considered nontrivial since it is associated with a set of nonlinear differential equations containing singularities (compared with, e.g., harmonic interactions alone, which lead to an easily solved system of linear differential equations). In these two respects it is analogous to (insoluble) models having Coulomb interactions, and as a result has been suggested as a tool for intuitively understanding physical systems like the helium atom.[24][25]
 +
 +
 +
然而,在经典力学和量子力学中,除了平方反作用力之外,还存在非平凡的相互作用定律,这些定律确实导致了精确的三体分析解析。一种这样的模型包括谐波吸引和排斥反立方力的组合。[24]该模型被认为是非平凡的,因为它与一组包含奇异性的非线性微分方程组相关联(例如,与单独的谐波相互作用相比,这导致了易于求解的线性微分方程组)。在这两个方面,它类似于具有库仑相互作用的(不溶性)模型,因此,有人提出将其作为直观理解诸如氦原子之类的物理系统的工具。
 +
 +
The gravitational three-body problem has also been studied using general relativity. Physically, a relativistic treatment becomes necessary in systems with very strong gravitational fields, such as near the event horizon of a black hole. However, the relativistic problem is considerably more difficult than in Newtonian mechanics, and sophisticated numerical techniques are required. Even the full two-body problem (i.e. for arbitrary ratio of masses) does not have a rigorous analytic solution in general relativity.[26]
 +
 +
使用广义相对论研究了引力三体问题。物理,相对论处理成为系统需要具有非常强大的引力场,如附近视界一个的黑洞。但是,相对论的问题比牛顿力学要困难得多,并且需要复杂的数值技术。即使是完整的两体问题(即对于任意质量比率),在广义相对论中也没有严格的解析解。
 +
 +
==n体问题==
 +
 +
三体问题是n体问题的特例,它描述了n个对象如何在一种物理力(例如重力)下运动。这些问题具有收敛的幂级数形式的全局解析解,这由Karl F. Sundman对于n = 3和由Qiudong Wang对于n > 3进行了证明。但是,Sundman和Wang系列收敛太慢,以至于在实际应用中毫无用处。因此,目前需要通过数值分析来近似解为数值积分或某些情况下的经典三角序列逼近。可以根据量子n体问题来处理原子,离子和分子等原子系统。在经典的物理系统中,n体问题通常是指星系或星系团。行星系统,例如恒星,行星及其卫星,也可以视为n体系统。某些应用程序容易受到干扰的影响 理论上,该系统被认为是一个两体问题,外加引起与假设的无扰动两体轨迹偏离的力。
150

个编辑

导航菜单