基于这种观点,量子论所描述的粒子的概率行为当然令人生疑。一个自然的想法是:由于缺乏足够的信息和理解,所以对粒子行为不能准确把握;而当我们拥有了足够的信息、更深的理论理解,就能准确预测粒子行为。这种想法催生了一类隐参量理论。贝尔 John Stewart Bell 在寻找玻姆式的隐参量理论时,发现该类理论一旦结合定域性条件,将对纠缠态粒子的可能关联程度建立一个严格的数学限制,即贝尔不等式,而该不等式在量子力学中却不一定成立。随着贝尔不等式被阿莱恩·阿斯派克特 Alain Aspect等人的实验证伪,定域性的隐参量理论被否定。<br> | 基于这种观点,量子论所描述的粒子的概率行为当然令人生疑。一个自然的想法是:由于缺乏足够的信息和理解,所以对粒子行为不能准确把握;而当我们拥有了足够的信息、更深的理论理解,就能准确预测粒子行为。这种想法催生了一类隐参量理论。贝尔 John Stewart Bell 在寻找玻姆式的隐参量理论时,发现该类理论一旦结合定域性条件,将对纠缠态粒子的可能关联程度建立一个严格的数学限制,即贝尔不等式,而该不等式在量子力学中却不一定成立。随着贝尔不等式被阿莱恩·阿斯派克特 Alain Aspect等人的实验证伪,定域性的隐参量理论被否定。<br> |