更改

跳到导航 跳到搜索
添加6字节 、 2020年10月10日 (六) 21:51
无编辑摘要
第610行: 第610行:     
}}</ref> a state known as a '''<font color="#ff8000">量子叠加quantum superposition</font>''', as a result of being linked to a random subatomic event that may or may not occur.<br>
 
}}</ref> a state known as a '''<font color="#ff8000">量子叠加quantum superposition</font>''', as a result of being linked to a random subatomic event that may or may not occur.<br>
一种被称为量子叠加的状态,是与可能或不可能发生的随机亚原子时间相联系的结果。
+
一种被称为量子叠加的状态,是与可能或不可能发生的随机亚原子事件相联系的结果。
      第645行: 第645行:  
The prevailing theory, called the Copenhagen interpretation, says that a quantum system remains in superposition until it interacts with, or is observed by the external world. When this happens, the superposition collapses into one or another of the possible definite states. The EPR experiment shows that a system with multiple particles separated by large distances can be in such a superposition. Schrödinger and Einstein exchanged letters about Einstein's EPR article, in the course of which Einstein pointed out that the  state of an unstable keg of gunpowder will, after a while, contain a superposition of both exploded and unexploded states.
 
The prevailing theory, called the Copenhagen interpretation, says that a quantum system remains in superposition until it interacts with, or is observed by the external world. When this happens, the superposition collapses into one or another of the possible definite states. The EPR experiment shows that a system with multiple particles separated by large distances can be in such a superposition. Schrödinger and Einstein exchanged letters about Einstein's EPR article, in the course of which Einstein pointed out that the  state of an unstable keg of gunpowder will, after a while, contain a superposition of both exploded and unexploded states.
   −
流行的理论是被称为哥本哈根诠释的理论,它认为量子系统在与外部世界相互作用或被外部世界观察之前一直处于叠加状态。发生这种情况时,叠加态会坍缩成一种或多种可能的定态。电子顺磁共振(EPR)实验表明,具有多个相距较远距离的多个粒子的系统可能处于这种叠加状态。薛定谔和爱因斯坦就爱因斯坦的 EPR 文章互相通信。在此过程中,爱因斯坦指出,不稳定的火药桶的状态会在一段时间后包含爆炸状态和未爆炸状态的叠加。
+
哥本哈根诠释这一理论是当时流行的理论,它认为量子系统在与外部世界相互作用或被外部世界观察之前一直处于叠加状态。发生这种情况时,叠加态会坍缩成一种或另一种种可能的定态。电子顺磁共振(EPR)实验表明,具有多个相距较远距离的多个粒子的系统可能处于这种叠加状态。薛定谔和爱因斯坦就爱因斯坦的 EPR 文章互相通信。在此过程中,爱因斯坦指出,不稳定的火药桶的状态会在一段时间后包含爆炸状态和未爆炸状态的叠加。
      第662行: 第662行:  
However, since Schrödinger's time, other interpretations of the mathematics of quantum mechanics have been advanced by physicists, some of which regard the "alive and dead" cat superposition as quite real.    Intended as a critique of the Copenhagen interpretation (the prevailing orthodoxy in 1935), the Schrödinger's cat thought experiment remains a defining touchstone for modern interpretations of quantum mechanics. Physicists often use the way each interpretation deals with Schrödinger's cat as a way of illustrating and comparing the particular features, strengths, and weaknesses of each interpretation.
 
However, since Schrödinger's time, other interpretations of the mathematics of quantum mechanics have been advanced by physicists, some of which regard the "alive and dead" cat superposition as quite real.    Intended as a critique of the Copenhagen interpretation (the prevailing orthodoxy in 1935), the Schrödinger's cat thought experiment remains a defining touchstone for modern interpretations of quantum mechanics. Physicists often use the way each interpretation deals with Schrödinger's cat as a way of illustrating and comparing the particular features, strengths, and weaknesses of each interpretation.
   −
但是,自从薛定谔时代以来,物理学家对'''<font color=”#ff8000”>量子力学数学mathematics of quantum mechanics</font>'''进行了其他解释,其中一些解释认为“活死”的猫叠加是十分真实的。作为对哥本哈根诠释的批判(1935年盛行的正统观念) ,薛定谔的猫思维实验仍然是现代量子力学诠释的决定性的试金石。物理学家经常使用每种解释处理薛定谔猫的方式来说明和比较每种解释的特点、优缺点。
+
但是,自从薛定谔时代以来,物理学家对'''<font color=”#ff8000”>量子力学数学mathematics of quantum mechanics</font>'''进行了其他解释,其中一些解释认为“活死”的猫的叠加是十分真实的。作为对哥本哈根诠释的批判(1935年盛行的正统观念) ,薛定谔的猫这一思维实验仍然是现代量子力学诠释的决定性的试金石。物理学家经常使用每种解释处理薛定谔猫的方式来说明和比较每种解释的特点、优缺点。
      第707行: 第707行:  
Schrödinger's famous thought experiment poses the question, "when does a quantum system stop existing as a superposition of states and become one or the other?"  (More technically, when does the actual quantum state stop being a non-trivial linear combination of states, each of which resembles different classical states, and instead begin to have a unique classical description?) If the cat survives, it remembers only being alive. But explanations of the EPR experiments that are consistent with standard microscopic quantum mechanics require that macroscopic objects, such as cats and notebooks, do not always have unique classical descriptions. The thought experiment illustrates this apparent paradox. Our intuition says that no observer can be in a mixture of states—yet the cat, it seems from the thought experiment, can be such a mixture. Is the cat required to be an observer, or does its existence in a single well-defined classical state require another external observer? Each alternative seemed absurd to Einstein, who was impressed by the ability of the thought experiment to highlight these issues. In a letter to Schrödinger dated 1950, he wrote:
 
Schrödinger's famous thought experiment poses the question, "when does a quantum system stop existing as a superposition of states and become one or the other?"  (More technically, when does the actual quantum state stop being a non-trivial linear combination of states, each of which resembles different classical states, and instead begin to have a unique classical description?) If the cat survives, it remembers only being alive. But explanations of the EPR experiments that are consistent with standard microscopic quantum mechanics require that macroscopic objects, such as cats and notebooks, do not always have unique classical descriptions. The thought experiment illustrates this apparent paradox. Our intuition says that no observer can be in a mixture of states—yet the cat, it seems from the thought experiment, can be such a mixture. Is the cat required to be an observer, or does its existence in a single well-defined classical state require another external observer? Each alternative seemed absurd to Einstein, who was impressed by the ability of the thought experiment to highlight these issues. In a letter to Schrödinger dated 1950, he wrote:
   −
薛定谔著名的思维实验提出了这样一个问题: “量子系统何时会停止作为叠加态而成为其中之一? ”(从技术上讲,什么时候实际的量子态不再是非平凡的线性组合状态,而是开始有一个独特的经典描述?)如果猫活下来了,它只记得活着。但是,与标准微观量子力学相一致的EPR实验的解释要求宏观物体,例如猫和笔记本,并不总是具有独特的经典描述。这个思维实验说明了这个明显的悖论。我们的直觉告诉我们,任何观察者都不可能处于混合的状态——然而,从思维实验来看,猫可能是这样的状态。这只猫是否需要成为观察者,或者它在一个定义明确的经典状态下的存在是否需要其他外部观察者?对爱因斯坦来说,每一种选择都是荒谬的,他对思想实验突出这些问题的能力印象深刻。在1950年写给薛定谔的一封信中,他写道:
+
薛定谔著名的思维实验提出了这样一个问题: “量子系统何时会停止作为叠加态而成为其中之一? ”(从技术上讲,什么时候实际的量子态不再是非平凡的线性组合状态,而是开始有一个独特的经典描述?)如果猫活下来了,它只记得活着。但是,与标准微观量子力学相一致的EPR实验的解释要求宏观物体,例如猫和笔记本,并不总是具有独特的经典描述。这个思维实验说明了这个明显的悖论。我们的直觉告诉我们,任何观察者都不可能处于混合的状态——然而,从思维实验来看,猫可能是这样的状态。这只猫是否需要成为观察者,或者它在一个定义明确的经典状态下的存在是否需要其他外部观察者?对爱因斯坦来说,每一种选择都是荒谬的,他对思维实验突出这些问题的能力印象深刻。在1950年写给薛定谔的一封信中,他写道:
    
{{Quote|You are the only contemporary physicist, besides [[Max von Laue|Laue]], who sees that one cannot get around the assumption of reality, if only one is honest. Most of them simply do not see what sort of risky game they are playing with reality—reality as something independent of what is experimentally established. Their interpretation is, however, refuted most elegantly by your system of radioactive atom + amplifier + charge of gun powder + cat in a box, in which the psi-function of the system contains both the cat alive and blown to bits. Nobody really doubts that the presence or absence of the cat is something independent of the act of observation.<ref>{{cite journal|title=Induction and Scientific Realism: Einstein versus van Fraassen Part Three: Einstein, Aim-Oriented Empiricism and the Discovery of Special and General Relativity|first=Nicholas|last=Maxwell|date=1 January 1993|volume=44|issue=2|pages=275–305|doi=10.1093/bjps/44.2.275|jstor=687649|journal=The British Journal for the Philosophy of Science}}</ref>}}<br>
 
{{Quote|You are the only contemporary physicist, besides [[Max von Laue|Laue]], who sees that one cannot get around the assumption of reality, if only one is honest. Most of them simply do not see what sort of risky game they are playing with reality—reality as something independent of what is experimentally established. Their interpretation is, however, refuted most elegantly by your system of radioactive atom + amplifier + charge of gun powder + cat in a box, in which the psi-function of the system contains both the cat alive and blown to bits. Nobody really doubts that the presence or absence of the cat is something independent of the act of observation.<ref>{{cite journal|title=Induction and Scientific Realism: Einstein versus van Fraassen Part Three: Einstein, Aim-Oriented Empiricism and the Discovery of Special and General Relativity|first=Nicholas|last=Maxwell|date=1 January 1993|volume=44|issue=2|pages=275–305|doi=10.1093/bjps/44.2.275|jstor=687649|journal=The British Journal for the Philosophy of Science}}</ref>}}<br>
   −
除了劳厄之外,您是唯一的当代物理学家,他发现只有诚实的人才能绕开对现实的假设。他们中的大多数人根本不知道他们在玩什么样的冒险游戏-现实是独立于实验建立的东西。但是,他们的解释被你的系统——放射性原子+放大器+火药电荷+盒子里的猫——优雅地驳斥了,在这个系统里,psi功能既包含活的猫,也包含被炸成碎片的猫。没有人真的怀疑猫的存在或不存在与观察行为无关。<br>
+
除了劳厄之外,您是唯一的当代物理学家,他发现只有诚实的人才能绕开对现实的假设。他们中的大多数人根本不知道他们在玩什么样的冒险游戏-现实是独立于实验建立的东西。但是,你的系统——放射性原子+放大器+火药电荷+盒子里的猫优雅地驳斥了他们的解释,在这个系统里,psi功能既包含活的猫,也包含被炸成碎片的猫。没有人真的怀疑猫的存在或不存在与观察行为无关。<br>
    
Note that the charge of gunpowder is not mentioned in Schrödinger's setup, which uses a Geiger counter as an amplifier and hydrocyanic poison instead of gunpowder. The gunpowder had been mentioned in Einstein's original suggestion to Schrödinger 15 years before, and Einstein carried it forward to the present discussion.
 
Note that the charge of gunpowder is not mentioned in Schrödinger's setup, which uses a Geiger counter as an amplifier and hydrocyanic poison instead of gunpowder. The gunpowder had been mentioned in Einstein's original suggestion to Schrödinger 15 years before, and Einstein carried it forward to the present discussion.
90

个编辑

导航菜单