where g(x) is some function with mean μ. When the entropy of g(x) is at a maximum and the constraint equations, which consist of the normalization condition <math>\left(1=\int_{-\infty}^\infty g(x)\,dx\right)</math> and the requirement of fixed variance <math>\left(\sigma^2=\int_{-\infty}^\infty g(x)(x-\mu)^2\,dx\right)</math>, are both satisfied, then a small variation δg(x) about g(x) will produce a variation δL about L which is equal to zero: | where g(x) is some function with mean μ. When the entropy of g(x) is at a maximum and the constraint equations, which consist of the normalization condition <math>\left(1=\int_{-\infty}^\infty g(x)\,dx\right)</math> and the requirement of fixed variance <math>\left(\sigma^2=\int_{-\infty}^\infty g(x)(x-\mu)^2\,dx\right)</math>, are both satisfied, then a small variation δg(x) about g(x) will produce a variation δL about L which is equal to zero: |