更改

跳到导航 跳到搜索
删除18字节 、 2020年10月27日 (二) 15:44
无编辑摘要
第249行: 第249行:  
Using the constraint equations to solve for λ<sub>0</sub> and λ yields the normal distribution:
 
Using the constraint equations to solve for λ<sub>0</sub> and λ yields the normal distribution:
   −
用约束方程求解 λ < sub > 0 </sub > 和 λ 得到正态分布:
+
用约束方程求解 λ0和 λ 得到正态分布:
    
* If a random vector <math>X \in \mathbb{R}^n</math> has mean zero and [[covariance]] matrix <math>K</math>, <math>h(\mathbf{X}) \leq \frac{1}{2} \log(\det{2 \pi e K}) = \frac{1}{2} \log[(2\pi e)^n \det{K}]</math> with equality if and only if <math>X</math> is [[Multivariate normal distribution#Joint normality|jointly gaussian]] (see [[#Maximization in the normal distribution|below]]).<ref name="cover_thomas" />{{rp|254}}
 
* If a random vector <math>X \in \mathbb{R}^n</math> has mean zero and [[covariance]] matrix <math>K</math>, <math>h(\mathbf{X}) \leq \frac{1}{2} \log(\det{2 \pi e K}) = \frac{1}{2} \log[(2\pi e)^n \det{K}]</math> with equality if and only if <math>X</math> is [[Multivariate normal distribution#Joint normality|jointly gaussian]] (see [[#Maximization in the normal distribution|below]]).<ref name="cover_thomas" />{{rp|254}}
153

个编辑

导航菜单