第260行: |
第260行: |
| | | |
| However, differential entropy does not have other desirable properties: | | However, differential entropy does not have other desirable properties: |
− | | + | 然而,微分熵并没有期望的性质 |
| * It is not invariant under [[change of variables]], and is therefore most useful with dimensionless variables. | | * It is not invariant under [[change of variables]], and is therefore most useful with dimensionless variables. |
− | | + | 它在变量变化下不是不变的,因此对无量纲变量最有用 |
| * It can be negative. | | * It can be negative. |
− | | + | 它可以为负 |
| Let <math>X</math> be an exponentially distributed random variable with parameter <math>\lambda</math>, that is, with probability density function | | Let <math>X</math> be an exponentially distributed random variable with parameter <math>\lambda</math>, that is, with probability density function |
| | | |
第278行: |
第278行: |
| | | |
| ==Maximization in the normal distribution== | | ==Maximization in the normal distribution== |
− | | + | 正态分布中的最大化 |
| ===Theorem=== | | ===Theorem=== |
− | | + | 理论 |
| Its differential entropy is then | | Its differential entropy is then |
− | | + | 它的微分熵就会 |
− | 它的微分熵就在那时
| |
− | | |
| With a [[normal distribution]], differential entropy is maximized for a given variance. A Gaussian random variable has the largest entropy amongst all random variables of equal variance, or, alternatively, the maximum entropy distribution under constraints of mean and variance is the Gaussian.<ref name="cover_thomas" />{{rp|255}} | | With a [[normal distribution]], differential entropy is maximized for a given variance. A Gaussian random variable has the largest entropy amongst all random variables of equal variance, or, alternatively, the maximum entropy distribution under constraints of mean and variance is the Gaussian.<ref name="cover_thomas" />{{rp|255}} |
− | | + | 对于正态分布,对于给定的方差,微分熵是最大的。在所有等方差随机变量中,高斯随机变量的熵最大,或者在均值和方差约束下的最大熵分布是高斯分布 |
| {| | | {| |
| | | |
第298行: |
第296行: |
| | | |
| ===Proof=== | | ===Proof=== |
− | | + | 证明 |
| | <math>h_e(X)\,</math> | | | <math>h_e(X)\,</math> |
| | | |
第375行: |
第373行: |
| Here, <math>h_e(X)</math> was used rather than <math>h(X)</math> to make it explicit that the logarithm was taken to base e, to simplify the calculation. | | Here, <math>h_e(X)</math> was used rather than <math>h(X)</math> to make it explicit that the logarithm was taken to base e, to simplify the calculation. |
| | | |
− | 在这里,使用 < math > h _ e (x) </math > 而不是 < math > h (x) </math > 来明确对数是以 e 为底,以简化计算。
| + | 在这里,使用he(X)而不是h(X) 来明确对数是以 e 为底,以简化计算。 |
| | | |
| because the result does not depend on <math>f(x)</math> other than through the variance. Combining the two results yields | | because the result does not depend on <math>f(x)</math> other than through the variance. Combining the two results yields |
第385行: |
第383行: |
| The differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable <math>X</math> and estimator <math>\widehat{X}</math> the following holds: | | The differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable <math>X</math> and estimator <math>\widehat{X}</math> the following holds: |
| | | |
− | 对于估计量的预期平方误差,微分熵产生一个下限。对于任何随机变量 < math > x </math > 和估计量 < math > widedhat { x } </math > 下面的值:
| + | 对于估计量的预期平方误差,微分熵产生一个下限。对于任何随机变量x和估计量 下面的值: |
| | | |
| | | |
第397行: |
第395行: |
| with equality if and only if <math>X</math> is a Gaussian random variable and <math>\widehat{X}</math> is the mean of <math>X</math>. | | with equality if and only if <math>X</math> is a Gaussian random variable and <math>\widehat{X}</math> is the mean of <math>X</math>. |
| | | |
− | 当且仅当 < math > x </math > 是一个 Gaussian 随机变量,而 < math > x } </math > 是 < math > x </math > 的平均值。 | + | 当且仅当 x是一个 Gaussian 随机变量,而 < math > x } </math > 是 < math > x </math > 的平均值。 |
| | | |
| This result may also be demonstrated using the [[variational calculus]]. A Lagrangian function with two [[Lagrangian multiplier]]s may be defined as: | | This result may also be demonstrated using the [[variational calculus]]. A Lagrangian function with two [[Lagrangian multiplier]]s may be defined as: |