更改

跳到导航 跳到搜索
添加232字节 、 2020年11月3日 (二) 15:38
第10行: 第10行:  
In [[information theory]], '''joint [[entropy (information theory)|entropy]]''' is a measure of the uncertainty associated with a set of [[random variables|variables]].<ref name=korn>{{cite book |author1=Theresa M. Korn |author2=Korn, Granino Arthur |title=Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review |publisher=Dover Publications |location=New York |year= |isbn=0-486-41147-8 |oclc= |doi=}}</ref>
 
In [[information theory]], '''joint [[entropy (information theory)|entropy]]''' is a measure of the uncertainty associated with a set of [[random variables|variables]].<ref name=korn>{{cite book |author1=Theresa M. Korn |author2=Korn, Granino Arthur |title=Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review |publisher=Dover Publications |location=New York |year= |isbn=0-486-41147-8 |oclc= |doi=}}</ref>
   −
==Definition==
+
==Definition 定义 ==
 
The joint [[Shannon entropy]] (in [[bit]]s) of two discrete [[random variable|random variables]] <math>X</math> and <math>Y</math> with images <math>\mathcal X</math> and <math>\mathcal Y</math> is defined as<ref name=cover1991>{{cite book |author1=Thomas M. Cover |author2=Joy A. Thomas |title=Elements of Information Theory |publisher=Wiley |location=Hoboken, New Jersey |year= |isbn=0-471-24195-4}}</ref>{{rp|16}}
 
The joint [[Shannon entropy]] (in [[bit]]s) of two discrete [[random variable|random variables]] <math>X</math> and <math>Y</math> with images <math>\mathcal X</math> and <math>\mathcal Y</math> is defined as<ref name=cover1991>{{cite book |author1=Thomas M. Cover |author2=Joy A. Thomas |title=Elements of Information Theory |publisher=Wiley |location=Hoboken, New Jersey |year= |isbn=0-471-24195-4}}</ref>{{rp|16}}
 +
具有像<math>\mathcal X</math>和<math>\mathcal Y</math>的两个离散随机变量<math>X</math>和<math>Y</math>的'''<font color="#ff8000"> 联合香农熵Shannon entropy </font>'''(以比特为单位)定义为:
    
{{Equation box 1
 
{{Equation box 1
第21行: 第22行:  
|border colour = #0073CF
 
|border colour = #0073CF
 
|background colour=#F5FFFA}}
 
|background colour=#F5FFFA}}
 +
    
where <math>x</math> and <math>y</math> are particular values of <math>X</math> and <math>Y</math>, respectively, <math>P(x,y)</math> is the [[joint probability]] of these values occurring together, and <math>P(x,y) \log_2[P(x,y)]</math> is defined to be 0 if <math>P(x,y)=0</math>.
 
where <math>x</math> and <math>y</math> are particular values of <math>X</math> and <math>Y</math>, respectively, <math>P(x,y)</math> is the [[joint probability]] of these values occurring together, and <math>P(x,y) \log_2[P(x,y)]</math> is defined to be 0 if <math>P(x,y)=0</math>.
961

个编辑

导航菜单