第12行: |
第12行: |
| ==Definition 定义 == | | ==Definition 定义 == |
| The joint [[Shannon entropy]] (in [[bit]]s) of two discrete [[random variable|random variables]] <math>X</math> and <math>Y</math> with images <math>\mathcal X</math> and <math>\mathcal Y</math> is defined as<ref name=cover1991>{{cite book |author1=Thomas M. Cover |author2=Joy A. Thomas |title=Elements of Information Theory |publisher=Wiley |location=Hoboken, New Jersey |year= |isbn=0-471-24195-4}}</ref>{{rp|16}} | | The joint [[Shannon entropy]] (in [[bit]]s) of two discrete [[random variable|random variables]] <math>X</math> and <math>Y</math> with images <math>\mathcal X</math> and <math>\mathcal Y</math> is defined as<ref name=cover1991>{{cite book |author1=Thomas M. Cover |author2=Joy A. Thomas |title=Elements of Information Theory |publisher=Wiley |location=Hoboken, New Jersey |year= |isbn=0-471-24195-4}}</ref>{{rp|16}} |
| + | |
| 具有像<math>\mathcal X</math>和<math>\mathcal Y</math>的两个离散随机变量<math>X</math>和<math>Y</math>的'''<font color="#ff8000"> 联合香农熵Shannon entropy </font>'''(以比特为单位)定义为: | | 具有像<math>\mathcal X</math>和<math>\mathcal Y</math>的两个离散随机变量<math>X</math>和<math>Y</math>的'''<font color="#ff8000"> 联合香农熵Shannon entropy </font>'''(以比特为单位)定义为: |
| + | |
| | | |
| {{Equation box 1 | | {{Equation box 1 |
第25行: |
第27行: |
| | | |
| where <math>x</math> and <math>y</math> are particular values of <math>X</math> and <math>Y</math>, respectively, <math>P(x,y)</math> is the [[joint probability]] of these values occurring together, and <math>P(x,y) \log_2[P(x,y)]</math> is defined to be 0 if <math>P(x,y)=0</math>. | | where <math>x</math> and <math>y</math> are particular values of <math>X</math> and <math>Y</math>, respectively, <math>P(x,y)</math> is the [[joint probability]] of these values occurring together, and <math>P(x,y) \log_2[P(x,y)]</math> is defined to be 0 if <math>P(x,y)=0</math>. |
| + | |
| + | 其中<math>x</math>和<math>y</math>分别是<math>X</math>和<math>Y</math>的特定值,<math>P(x,y)</math>是这些值产生交集时的联合概率,如果<math>P(x,y)=0</math>则<math>P(x,y) \log_2[P(x,y)]</math>定义为0。 |
| + | |
| + | |
| | | |
| For more than two random variables <math>X_1, ..., X_n</math> this expands to | | For more than two random variables <math>X_1, ..., X_n</math> this expands to |
| + | 对于两个以上的随机变量<math>X_1, ..., X_n</math>,它扩展为 |
| + | |
| | | |
| {{Equation box 1 | | {{Equation box 1 |
第37行: |
第45行: |
| |border colour = #0073CF | | |border colour = #0073CF |
| |background colour=#F5FFFA}} | | |background colour=#F5FFFA}} |
| + | |
| | | |
| where <math>x_1,...,x_n</math> are particular values of <math>X_1,...,X_n</math>, respectively, <math>P(x_1, ..., x_n)</math> is the probability of these values occurring together, and <math>P(x_1, ..., x_n) \log_2[P(x_1, ..., x_n)]</math> is defined to be 0 if <math>P(x_1, ..., x_n)=0</math>. | | where <math>x_1,...,x_n</math> are particular values of <math>X_1,...,X_n</math>, respectively, <math>P(x_1, ..., x_n)</math> is the probability of these values occurring together, and <math>P(x_1, ..., x_n) \log_2[P(x_1, ..., x_n)]</math> is defined to be 0 if <math>P(x_1, ..., x_n)=0</math>. |
| + | |
| + | 其中<math>x_1,...,x_n</math>分别是<math>X_1,...,X_n</math>的特定值,<math>P(x_1, ..., x_n)</math>是这些值产生交集时的概率,如果<math>P(x_1, ..., x_n)=0</math>则<math>P(x_1, ..., x_n) \log_2[P(x_1, ..., x_n)]</math>定义为0。 |
| | | |
| ==Properties== | | ==Properties== |