更改

跳到导航 跳到搜索
添加1,192字节 、 2020年11月3日 (二) 16:56
第528行: 第528行:  
In an injured or infected tissue, inflammatory mediators elicit feedback responses in cells, which alter gene expression, and change the groups of molecules expressed and secreted, including molecules that induce diverse cells to cooperate and restore tissue structure and function. This type of feedback is important because it enables coordination of immune responses and recovery from infections and injuries. During cancer, key elements of this feedback fail. This disrupts tissue function and immunity.<ref>{{cite journal | last1 = Vlahopoulos | first1 = SA | title = Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode. | journal = Cancer Biology & Medicine | date = August 2017 | pmid = 28884042 | doi = 10.20892/j.issn.2095-3941.2017.0029 | volume = 14 | issue = 3 | pages = 254–270 | pmc = 5570602}}</ref><ref>{{cite journal|last1=Korneev|first1=KV|last2=Atretkhany|first2=KN|last3=Drutskaya|first3=MS|last4=Grivennikov|first4=SI|last5=Kuprash|first5=DV|last6=Nedospasov|first6=SA|title=TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis.|journal=Cytokine|date=January 2017|volume=89|pages=127–135|doi=10.1016/j.cyto.2016.01.021|pmid=26854213}}</ref>
 
In an injured or infected tissue, inflammatory mediators elicit feedback responses in cells, which alter gene expression, and change the groups of molecules expressed and secreted, including molecules that induce diverse cells to cooperate and restore tissue structure and function. This type of feedback is important because it enables coordination of immune responses and recovery from infections and injuries. During cancer, key elements of this feedback fail. This disrupts tissue function and immunity.<ref>{{cite journal | last1 = Vlahopoulos | first1 = SA | title = Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode. | journal = Cancer Biology & Medicine | date = August 2017 | pmid = 28884042 | doi = 10.20892/j.issn.2095-3941.2017.0029 | volume = 14 | issue = 3 | pages = 254–270 | pmc = 5570602}}</ref><ref>{{cite journal|last1=Korneev|first1=KV|last2=Atretkhany|first2=KN|last3=Drutskaya|first3=MS|last4=Grivennikov|first4=SI|last5=Kuprash|first5=DV|last6=Nedospasov|first6=SA|title=TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis.|journal=Cytokine|date=January 2017|volume=89|pages=127–135|doi=10.1016/j.cyto.2016.01.021|pmid=26854213}}</ref>
    +
在受伤或感染的组织中,炎症介质引起细胞的反馈反应,改变基因表达,并改变分子表达和分泌的群体,包括诱导不同细胞合作和恢复组织结构和功能的分子。这种类型的反馈是重要的,因为它能够协调免疫反应和从感染和损伤中恢复。在癌症过程中,这种反馈的关键要素会失效。
       
Mechanisms of feedback were first elucidated in bacteria, where a nutrient elicits changes in some of their metabolic functions.<ref>{{cite journal|last1= Sanwal|first1=BD| title= Allosteric controls of amphilbolic pathways in bacteria.|journal= Bacteriol. Rev.|date=March 1970|volume=34|issue=1|pages=20–39 |pmid=4315011 |pmc=378347|doi=10.1128/MMBR.34.1.20-39.1970}}</ref>
 
Mechanisms of feedback were first elucidated in bacteria, where a nutrient elicits changes in some of their metabolic functions.<ref>{{cite journal|last1= Sanwal|first1=BD| title= Allosteric controls of amphilbolic pathways in bacteria.|journal= Bacteriol. Rev.|date=March 1970|volume=34|issue=1|pages=20–39 |pmid=4315011 |pmc=378347|doi=10.1128/MMBR.34.1.20-39.1970}}</ref>
 +
反馈机制最早是在细菌中被阐明的,在细菌中,一种营养物质会引起它们的一些代谢功能的变化。
    
op-amp relaxation oscillator.]]
 
op-amp relaxation oscillator.]]
第537行: 第539行:     
Feedback is also central to the operations of [[gene]]s and [[gene regulatory network]]s. [[Repressor protein|Repressor]] (see [[Lac repressor]]) and [[activator protein|activator]] [[protein]]s are used to create genetic [[operon]]s, which were identified by [[Francois Jacob]] and [[Jacques Monod]] in 1961 as ''feedback loops''.<ref>{{cite journal|last1= Jacob|first1=F|last2=Monod|first2=J|title= Genetic regulatory mechanisms in the synthesis of proteins.|journal= J Mol Biol|date=June 1961|volume=3|issue=3|pages=318–356 |pmid=13718526|doi=10.1016/S0022-2836(61)80072-7}}</ref> These feedback loops may be positive (as in the case of the coupling between a sugar molecule and the proteins that import sugar into a bacterial cell), or negative (as is often the case in [[metabolic]] consumption).
 
Feedback is also central to the operations of [[gene]]s and [[gene regulatory network]]s. [[Repressor protein|Repressor]] (see [[Lac repressor]]) and [[activator protein|activator]] [[protein]]s are used to create genetic [[operon]]s, which were identified by [[Francois Jacob]] and [[Jacques Monod]] in 1961 as ''feedback loops''.<ref>{{cite journal|last1= Jacob|first1=F|last2=Monod|first2=J|title= Genetic regulatory mechanisms in the synthesis of proteins.|journal= J Mol Biol|date=June 1961|volume=3|issue=3|pages=318–356 |pmid=13718526|doi=10.1016/S0022-2836(61)80072-7}}</ref> These feedback loops may be positive (as in the case of the coupling between a sugar molecule and the proteins that import sugar into a bacterial cell), or negative (as is often the case in [[metabolic]] consumption).
 +
 +
反馈也是[[基因]]s和[[基因调控网络]]s运作的核心。[[抑制蛋白|抑制器]]。(见[[Lac repressor]])和[[activator protein|activator]]。[[蛋白质]]用于创建遗传[[操作子]],1961年[[Francois Jacob]]和[[Jacques Monod]]将其确定为''反馈回路''。
    
An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. Oscillators convert direct current (DC) from a power supply to an alternating current signal.  They are widely used in many electronic devices.  Common examples of signals generated by oscillators include signals broadcast by radio and television transmitters, clock signals that regulate computers and quartz clocks, and the sounds produced by electronic beepers and video games.
 
An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. Oscillators convert direct current (DC) from a power supply to an alternating current signal.  They are widely used in many electronic devices.  Common examples of signals generated by oscillators include signals broadcast by radio and television transmitters, clock signals that regulate computers and quartz clocks, and the sounds produced by electronic beepers and video games.
第569行: 第573行:     
In [[psychology]], the body receives a stimulus from the environment or internally that causes the release of [[hormone]]s. Release of hormones then may cause more of those hormones to be released, causing a positive feedback loop. This cycle is also found in certain behaviour. For example, "shame loops" occur in people who blush easily. When they realize that they are blushing, they become even more embarrassed, which leads to further blushing, and so on.<ref>{{cite magazine|last=Scheff |first=Thomas |url=http://www.psychologytoday.com/blog/lets-connect/200909/the-emotionalrelational-world |title=The Emotional/Relational World |magazine=Psychology Today |date=2009-09-02 |accessdate=2013-07-10}}</ref>
 
In [[psychology]], the body receives a stimulus from the environment or internally that causes the release of [[hormone]]s. Release of hormones then may cause more of those hormones to be released, causing a positive feedback loop. This cycle is also found in certain behaviour. For example, "shame loops" occur in people who blush easily. When they realize that they are blushing, they become even more embarrassed, which leads to further blushing, and so on.<ref>{{cite magazine|last=Scheff |first=Thomas |url=http://www.psychologytoday.com/blog/lets-connect/200909/the-emotionalrelational-world |title=The Emotional/Relational World |magazine=Psychology Today |date=2009-09-02 |accessdate=2013-07-10}}</ref>
 +
在[[心理学]]中,身体收到来自环境或内部的刺激,导致[[激素]]的释放。然后,激素的释放可能会导致更多的这些激素被释放,造成正反馈循环。这种循环也存在于某些行为中。例如,"羞耻循环 "发生在容易脸红的人身上。当他们意识到自己脸红时,他们会变得更加尴尬,从而导致进一步的脸红,以此类推。
    
Flip-flops can be either simple (transparent or opaque) or clocked (synchronous or edge-triggered).  Although the term flip-flop has historically referred generically to both simple and clocked circuits, in modern usage it is common to reserve the term flip-flop exclusively for discussing clocked circuits; the simple ones are commonly called latches.
 
Flip-flops can be either simple (transparent or opaque) or clocked (synchronous or edge-triggered).  Although the term flip-flop has historically referred generically to both simple and clocked circuits, in modern usage it is common to reserve the term flip-flop exclusively for discussing clocked circuits; the simple ones are commonly called latches.
    
触发器可以是简单的(透明的或者不透明的)或者是计时的(同步的或者边缘触发的)。虽然触发器这个术语在历史上一直泛指简单电路和时钟电路,但在现代用法中,通常将触发器这个术语专门用于讨论时钟电路,简单的电路通常称为锁存电路。
 
触发器可以是简单的(透明的或者不透明的)或者是计时的(同步的或者边缘触发的)。虽然触发器这个术语在历史上一直泛指简单电路和时钟电路,但在现代用法中,通常将触发器这个术语专门用于讨论时钟电路,简单的电路通常称为锁存电路。
  −
      
===Climate science===
 
===Climate science===
58

个编辑

导航菜单