更改

跳到导航 跳到搜索
添加6字节 、 2020年11月4日 (三) 15:20
第102行: 第102行:  
== Some identities 部分特性 ==
 
== Some identities 部分特性 ==
 
Alternatively, we may write in terms of joint and conditional [[Entropy (information theory)|entropies]] as<ref>{{cite book |last1=Cover |first1=Thomas |author-link1=Thomas M. Cover |last2=Thomas |first2=Joy A. |title=Elements of Information Theory |edition=2nd |location=New York |publisher=[[Wiley-Interscience]] |date=2006 |isbn=0-471-24195-4}}</ref>
 
Alternatively, we may write in terms of joint and conditional [[Entropy (information theory)|entropies]] as<ref>{{cite book |last1=Cover |first1=Thomas |author-link1=Thomas M. Cover |last2=Thomas |first2=Joy A. |title=Elements of Information Theory |edition=2nd |location=New York |publisher=[[Wiley-Interscience]] |date=2006 |isbn=0-471-24195-4}}</ref>
 +
 
同时我们也可以将联合和条件熵写为:
 
同时我们也可以将联合和条件熵写为:
   第110行: 第111行:     
This can be rewritten to show its relationship to mutual information
 
This can be rewritten to show its relationship to mutual information
 +
 
这么表达以显示其与交互信息的关系
 
这么表达以显示其与交互信息的关系
   第117行: 第119行:     
usually rearranged as '''the chain rule for mutual information'''
 
usually rearranged as '''the chain rule for mutual information'''
 +
 
通常情况下,表达式被重新整理为“交互信息的链式法则”
 
通常情况下,表达式被重新整理为“交互信息的链式法则”
   第124行: 第127行:     
Another equivalent form of the above is<ref>[https://math.stackexchange.com/q/1863993 Decomposition on Math.StackExchange]</ref>
 
Another equivalent form of the above is<ref>[https://math.stackexchange.com/q/1863993 Decomposition on Math.StackExchange]</ref>
 +
 
上述的另一种等效形式是:
 
上述的另一种等效形式是:
   第132行: 第136行:     
Like mutual information, conditional mutual information can be expressed as a [[Kullback–Leibler divergence]]:
 
Like mutual information, conditional mutual information can be expressed as a [[Kullback–Leibler divergence]]:
 +
 
类似交互信息一样,条件交互信息可以表示为Kullback-Leibler散度:
 
类似交互信息一样,条件交互信息可以表示为Kullback-Leibler散度:
   第139行: 第144行:     
Or as an expected value of simpler Kullback–Leibler divergences:
 
Or as an expected value of simpler Kullback–Leibler divergences:
 +
 
或作为更简单的Kullback-Leibler差异的期望值:
 
或作为更简单的Kullback-Leibler差异的期望值:
  
961

个编辑

导航菜单