第102行: |
第102行: |
| == Some identities 部分特性 == | | == Some identities 部分特性 == |
| Alternatively, we may write in terms of joint and conditional [[Entropy (information theory)|entropies]] as<ref>{{cite book |last1=Cover |first1=Thomas |author-link1=Thomas M. Cover |last2=Thomas |first2=Joy A. |title=Elements of Information Theory |edition=2nd |location=New York |publisher=[[Wiley-Interscience]] |date=2006 |isbn=0-471-24195-4}}</ref> | | Alternatively, we may write in terms of joint and conditional [[Entropy (information theory)|entropies]] as<ref>{{cite book |last1=Cover |first1=Thomas |author-link1=Thomas M. Cover |last2=Thomas |first2=Joy A. |title=Elements of Information Theory |edition=2nd |location=New York |publisher=[[Wiley-Interscience]] |date=2006 |isbn=0-471-24195-4}}</ref> |
| + | |
| 同时我们也可以将联合和条件熵写为: | | 同时我们也可以将联合和条件熵写为: |
| | | |
第110行: |
第111行: |
| | | |
| This can be rewritten to show its relationship to mutual information | | This can be rewritten to show its relationship to mutual information |
| + | |
| 这么表达以显示其与交互信息的关系 | | 这么表达以显示其与交互信息的关系 |
| | | |
第117行: |
第119行: |
| | | |
| usually rearranged as '''the chain rule for mutual information''' | | usually rearranged as '''the chain rule for mutual information''' |
| + | |
| 通常情况下,表达式被重新整理为“交互信息的链式法则” | | 通常情况下,表达式被重新整理为“交互信息的链式法则” |
| | | |
第124行: |
第127行: |
| | | |
| Another equivalent form of the above is<ref>[https://math.stackexchange.com/q/1863993 Decomposition on Math.StackExchange]</ref> | | Another equivalent form of the above is<ref>[https://math.stackexchange.com/q/1863993 Decomposition on Math.StackExchange]</ref> |
| + | |
| 上述的另一种等效形式是: | | 上述的另一种等效形式是: |
| | | |
第132行: |
第136行: |
| | | |
| Like mutual information, conditional mutual information can be expressed as a [[Kullback–Leibler divergence]]: | | Like mutual information, conditional mutual information can be expressed as a [[Kullback–Leibler divergence]]: |
| + | |
| 类似交互信息一样,条件交互信息可以表示为Kullback-Leibler散度: | | 类似交互信息一样,条件交互信息可以表示为Kullback-Leibler散度: |
| | | |
第139行: |
第144行: |
| | | |
| Or as an expected value of simpler Kullback–Leibler divergences: | | Or as an expected value of simpler Kullback–Leibler divergences: |
| + | |
| 或作为更简单的Kullback-Leibler差异的期望值: | | 或作为更简单的Kullback-Leibler差异的期望值: |
| | | |