更改

跳到导航 跳到搜索
删除1,694字节 、 2020年11月15日 (日) 20:48
第129行: 第129行:  
==属性/性质==
 
==属性/性质==
 
===最小作用原理===
 
===最小作用原理===
The stabilization of chip configurations obeys a form of ''[[principle of least action|least action principle]]'': each vertex topples no more than necessary in the course of the stabilization.<ref name=Fey2010>
+
The stabilization of chip configurations obeys a form of ''[[principle of least action|least action principle]]'': each vertex topples no more than necessary in the course of the stabilization.
{{cite journal
  −
| author = Fey, A. |author2=Levine, L.|author3=Peres, Y.
  −
| year=2010
  −
| issn=0022-4715
  −
| journal=Journal of Statistical Physics
  −
| volume=138
  −
| number=1–3
  −
| doi=10.1007/s10955-009-9899-6
  −
| title=Growth Rates and Explosions in Sandpiles
  −
| pages=143–159|arxiv = 0901.3805 |bibcode = 2010JSP...138..143F |s2cid=7180488}}</ref>
      
芯片构型的稳定遵循一种“最小作用原理”的形式:每个顶点在稳定过程中不超过必要的崩塌量。
 
芯片构型的稳定遵循一种“最小作用原理”的形式:每个顶点在稳定过程中不超过必要的崩塌量。
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])chip configurations的翻译存疑==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])
+
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])chip configurations的翻译存疑==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])
   −
This can be formalized as follows.  Call a sequence of topples ''legal'' if it only topples unstable vertices, and ''stabilizing'' if it results in a stable configuration.  The standard way of stabilizing the sandpile is to find a maximal legal sequence; i.e., by toppling so long as it is possible.  Such a sequence is obviously stabilizing, and the Abelian property of the sandpile is that all such sequences are equivalent up to permutation of the toppling order; that is, for any vertex <math>v</math>, the number of times <math>v</math> topples is the same in all legal stabilizing sequences.  According to the least action principle, a '''minimal stabilizing''' sequence is also equivalent up to permutation of the toppling order to a legal (and still stabilizing) sequence.  In particular, the configuration resulting from a minimal stabilizing sequence is the same as results from a maximal legal sequence.
     −
这可以形式化如下。如果一个崩塌序列只推倒不稳定的顶点,则称其为“合法的”,使用一组合法的顶点序列,如果它的结果是一个稳定的构型,则称其为“稳定的”。稳定沙堆的标准方法是找到一个最大的合法崩塌序列,也就是说,让崩塌序列尽可能地长。这种序列具有明显的稳定性,沙堆的可交换性质是所有这些序列都等价于倾斜序列的置换,也就是说,对于任何顶点<math>v</math>,在所有合法的稳定序列中<math>v</math>的崩塌次数都是相同的。根据最小作用原理,最小稳定序列等价于合法的(且稳定的)崩塌序列的置换。特别地,由最小稳定序列产生的构型与由最大合法序列产生的构型是相同的。
+
这可以形式化如下:如果一个崩塌序列只推倒不稳定的顶点,则称其为“合法的”,使用一组合法的顶点序列,如果它的结果是一个稳定的构型,则称其为“稳定的”。稳定沙堆的标准方法是找到一个最大的合法崩塌序列,也就是说,让崩塌序列尽可能地长。这种序列具有明显的稳定性,沙堆的可交换性质是所有这些序列都等价于倾斜序列的置换,也就是说,对于任何顶点<math>v</math>,在所有合法的稳定序列中<math>v</math>的崩塌次数都是相同的。根据最小作用原理,最小稳定序列等价于合法的(且稳定的)崩塌序列的置换。特别地,由最小稳定序列产生的构型与由最大合法序列产生的构型是相同的。
      −
More formally, if <math>\mathbf{u}</math> is a vector such that <math>\mathbf{u}(v)</math> is the number of times the vertex <math>v</math> topples during the stabilization (via the toppling of unstable vertices) of a chip configuration <math>z</math>, and <math>\mathbf{n}</math> is an integral vector (not necessarily non-negative) such that <math>z-\mathbf{n}\Delta'</math> is stable, then <math>\mathbf{u}(v) \leq \mathbf{n}(v)</math> for all vertices <math>v</math>.
      
更正式地说,如果<math>\mathbf{u}</math>是一个向量, <math>\mathbf{u}(v)</math>是碎片构型<math>z</math>在稳定过程中(通过不稳定顶点的崩塌)顶点<math>v</math>崩塌的次数,并且<math>\mathbf{n}</math>是一个积分向量(不一定是非负的),使得<math>z-\mathbf{n}\Delta'</math>是稳定的,那么对于所有顶点<math>v</math>,<math>\mathbf{u}(v) \leq \mathbf{n}(v)</math>。
 
更正式地说,如果<math>\mathbf{u}</math>是一个向量, <math>\mathbf{u}(v)</math>是碎片构型<math>z</math>在稳定过程中(通过不稳定顶点的崩塌)顶点<math>v</math>崩塌的次数,并且<math>\mathbf{n}</math>是一个积分向量(不一定是非负的),使得<math>z-\mathbf{n}\Delta'</math>是稳定的,那么对于所有顶点<math>v</math>,<math>\mathbf{u}(v) \leq \mathbf{n}(v)</math>。
   −
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])<math>\mathbf{n}</math> is an integral vector (not necessarily non-negative)这一句话的翻译存疑。
+
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])<math>\mathbf{n}</math> is an integral vector (not necessarily non-negative)这一句话的翻译存疑。==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])
    
=== Scaling limits缩放限制===
 
=== Scaling limits缩放限制===

导航菜单