第34行: |
第34行: |
| The first law of thermodynamics: When energy passes, as work, as heat, or with matter, into or out of a system, the system's internal energy changes in accord with the law of conservation of energy. Equivalently, perpetual motion machines of the first kind (machines that produce work with no energy input) are impossible. | | The first law of thermodynamics: When energy passes, as work, as heat, or with matter, into or out of a system, the system's internal energy changes in accord with the law of conservation of energy. Equivalently, perpetual motion machines of the first kind (machines that produce work with no energy input) are impossible. |
| | | |
− | '''<font color="#ff8000"> 热力学第一定律 first law of thermodynamics</font>''': 当能量以'''<font color="#ff8000"> 功work</font>'''、'''<font color="#ff8000"> 热heat</font>'''或物质的形式进入或离开一个系统时,根据能量守恒定律, 系统的'''<font color="#ff8000"> 内能 internal energy</font>'''发生变化。同样地,第一类永动机机器(不需要能量输入就能工作的机器)是不可能造成的。 | + | '''<font color="#ff8000"> 热力学第一定律 first law of thermodynamics</font>''': 当能量以'''<font color="#ff8000"> 功work</font>'''、'''<font color="#ff8000"> 热heat</font>'''或物质的形式进入或离开一个系统时,根据能量守恒定律, 系统的'''<font color="#ff8000">内能 internal energy</font>'''发生变化。同样地,第一类永动机机器(不需要能量输入就可以做功的机器)是不可能造成的。 |
| | | |
| | | |
第42行: |
第42行: |
| The second law of thermodynamics: In a natural thermodynamic process, the sum of the entropies of the interacting thermodynamic systems increases. Equivalently, perpetual motion machines of the second kind (machines that spontaneously convert thermal energy into mechanical work) are impossible. | | The second law of thermodynamics: In a natural thermodynamic process, the sum of the entropies of the interacting thermodynamic systems increases. Equivalently, perpetual motion machines of the second kind (machines that spontaneously convert thermal energy into mechanical work) are impossible. |
| | | |
− | '''<font color="#ff8000"> 热力学第二定律second law of thermodynamics</font>''':在自然热力学过程中,相互作用的热力学系统的熵的总和增加。同样地,第二类永动机(自发地把热能转化为机械功的机器)是不可能制造出的。 | + | '''<font color="#ff8000"> 热力学第二定律 second law of thermodynamics</font>''': 在自然热力学过程中,相互作用的热力学系统的熵的总和增加。同样地,第二类永动机(自发地把热能转化为机械功的机器)是不可能制造出的。 |
| | | |
| | | |
第50行: |
第50行: |
| The third law of thermodynamics: The entropy of a system approaches a constant value as the temperature approaches absolute zero. With the exception of non-crystalline solids (glasses) the entropy of a system at absolute zero is typically close to zero. | | The third law of thermodynamics: The entropy of a system approaches a constant value as the temperature approaches absolute zero. With the exception of non-crystalline solids (glasses) the entropy of a system at absolute zero is typically close to zero. |
| | | |
− | '''<font color="#ff8000"> 热力学第三定律third law of thermodynamics</font>''':当温度趋于'''<font color="#ff8000"> 绝对零度absolute zero</font>'''时,系统的熵趋于一个定值。除非晶固体(玻璃)外,系统在绝对零度时的熵通常接近于零。 | + | '''<font color="#ff8000"> 热力学第三定律 third law of thermodynamics</font>''':当温度趋于'''<font color="#ff8000"> 绝对零度 absolute zero</font>'''时,系统的熵趋于一个定值。除非晶固体(玻璃)外,系统在绝对零度时的熵通常接近于零。 |
| | | |
| | | |
第58行: |
第58行: |
| Additional laws have been suggested, but none of them achieved the generality of the four accepted laws, and are not discussed in standard textbooks. | | Additional laws have been suggested, but none of them achieved the generality of the four accepted laws, and are not discussed in standard textbooks. |
| | | |
− | 有人提出了其他的定律,但没有一个达到公认的四个定律的普遍性,也没有在标准教科书中被讨论。
| + | 有人提出了其他的定律,但没有一个达到公认的四个定律的普遍性,也没有在标准教科书中被讨论<ref name="Guggenheim 1985"/><ref name="Kittel and Kroemer 1980"/><ref name="Adkins 1968"/><ref name="LJCV 2008"/><ref name="DGM 1962">De Groot, S.R., Mazur, P. (1962). ''Non-equilibrium Thermodynamics'', North Holland, Amsterdam.</ref><ref name="Glansdorff and Prigogine 1971">Glansdorff, P., Prigogine, I. (1971). ''Thermodynamic Theory of Structure, Stability and Fluctuations'', Wiley-Interscience, London, {{ISBN|0-471-30280-5}}.</ref> |
| + | 。 |
| | | |
| | | |