更改

跳到导航 跳到搜索
无编辑摘要
第75行: 第75行:     
{{quote|If two systems are both in thermal equilibrium with a third system then they are in thermal equilibrium with each other.<ref>Guggenheim (1985), p.&nbsp;8.</ref>}}<br>
 
{{quote|If two systems are both in thermal equilibrium with a third system then they are in thermal equilibrium with each other.<ref>Guggenheim (1985), p.&nbsp;8.</ref>}}<br>
如果两个系统都与第三个系统处于热平衡状态,则它们彼此处于热平衡状态.
+
如果两个系统都各与第三个系统处于热平衡状态,则它们彼此处于热平衡状态.
      第99行: 第99行:  
Although these concepts of temperature and of thermal equilibrium are fundamental to thermodynamics and were clearly stated in the nineteenth century, the desire to explicitly number the above law was not widely felt until Fowler and Guggenheim did so in the 1930s, long after the first, second, and third law were already widely understood and recognized.  Hence it was numbered the zeroth law. The importance of the law as a foundation to the earlier laws is that it allows the definition of temperature in a non-circular way without reference to entropy, its conjugate variable. Such a temperature definition is said to be 'empirical'.
 
Although these concepts of temperature and of thermal equilibrium are fundamental to thermodynamics and were clearly stated in the nineteenth century, the desire to explicitly number the above law was not widely felt until Fowler and Guggenheim did so in the 1930s, long after the first, second, and third law were already widely understood and recognized.  Hence it was numbered the zeroth law. The importance of the law as a foundation to the earlier laws is that it allows the definition of temperature in a non-circular way without reference to entropy, its conjugate variable. Such a temperature definition is said to be 'empirical'.
   −
虽然这些关于温度和热平衡的概念是热力学的基础,并在19世纪得到了清楚的阐述,但是直到20世纪30年代福勒和古根海姆这样做的时候,人们才普遍感觉到需要对上述定律进行明确编号,而这时第一定律、第二定律和第三定律已经得到广泛的理解和认可。因此,它被称为第零定律。该定律作为早期定律基础的重要性在于,它允许以非循环的方式定义温度,而无需参考熵及其共轭变量。这样的温度定义被称为“经验主义”。
+
虽然这些关于温度和热平衡的概念是热力学的基础,并在19世纪得到了清楚的阐述,但是直到20世纪30年代福勒和古根海姆这样做的时候,人们才普遍感觉到需要对上述定律进行明确编号,而这时第一定律、第二定律和第三定律已经得到广泛的理解和认可。因此,它被称为第零定律。该定律作为早期定律基础的重要性在于,它允许以非循环的方式定义温度,而无需参考熵及其共轭变量。这样的温度定义被称为“经验主义的”。
      第110行: 第110行:  
The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic systems.
 
The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic systems.
   −
热力学第一定律是'''<font color="#ff8000"> 能量守恒conservation of energy</font>'''定律的一个版本,适用于热力学系统。
+
热力学第一定律是'''<font color="#ff8000"> 能量守恒 conservation of energy</font>'''定律的一个版本,适用于热力学系统。
      第141行: 第141行:  
where  denotes the change in the internal energy  of a closed system,  denotes the quantity of energy supplied to the system as heat, and  denotes the amount of thermodynamic work (expressed here with a negative sign) done by the system on its surroundings. (An alternate sign convention not used in this article is to define  as the work done on the system.)  
 
where  denotes the change in the internal energy  of a closed system,  denotes the quantity of energy supplied to the system as heat, and  denotes the amount of thermodynamic work (expressed here with a negative sign) done by the system on its surroundings. (An alternate sign convention not used in this article is to define  as the work done on the system.)  
   −
其中{{math|Δ''U''<sub>system</sub>}}表示一个封闭系统内部能量的变化,{{math|''Q''}} 表示外界以热的形式提供给系统的能量,{{math|''W''}}表示该系统对周围环境所做的热力学功(在这里用负号表示)。(本文中没有使用的另一个符号约定是定义对系统所做的功。
+
其中{{math|Δ''U''<sub>system</sub>}}表示一个封闭系统内部能量的变化,{{math|''Q''}} 表示外界以热的形式提供给系统的能量,{{math|''W''}}表示该系统对周围环境所做的热力学功(在这里用负号表示)。(定义对系统所做的功在本文中没有使用的另一个符号约定。)
    
   
 
   
第158行: 第158行:     
<math>\Delta U_{\rm system\,(full\,cycle)}=0</math>
 
<math>\Delta U_{\rm system\,(full\,cycle)}=0</math>
  −
0 / math
        第167行: 第165行:  
hence, for a full cycle,
 
hence, for a full cycle,
   −
因此,一个完整的循环,
+
因此,对于一个完整的循环,
      第173行: 第171行:  
::Or <math>Q - W = Q_{\rm in} - Q_{\rm out} - (W_{\rm out} - W_{\rm in}) =0</math>.
 
::Or <math>Q - W = Q_{\rm in} - Q_{\rm out} - (W_{\rm out} - W_{\rm in}) =0</math>.
   −
Or <math>Q - W = Q_{\rm in} - Q_{\rm out} - (W_{\rm out} - W_{\rm in}) =0</math>.
+
::Or <math>Q - W = Q_{\rm in} - Q_{\rm out} - (W_{\rm out} - W_{\rm in}) =0</math>.
 
  −
Or <math>Q - W = Q_{\rm in} - Q_{\rm out} - (W_{\rm out} - W_{\rm in}) =0</math>.
       
51

个编辑

导航菜单