第1行: |
第1行: |
− | 此词条暂由彩云小译翻译,翻译字数共2922,未经人工整理和审校,带来阅读不便,请见谅。
| + | 此词条由Jie翻译。 |
| | | |
| {{short description|Branch of thermodynamics}} | | {{short description|Branch of thermodynamics}} |
第9行: |
第9行: |
| Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of variables (non-equilibrium state variables) that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions. It relies on what may be thought of as more or less nearness to thermodynamic equilibrium. | | Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of variables (non-equilibrium state variables) that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions. It relies on what may be thought of as more or less nearness to thermodynamic equilibrium. |
| | | |
− | 非平衡态热力学热力学是热力学的一个分支,研究的物理系统不在热力学平衡中,但可以用变量(非平衡态变量)来描述,这些变量代表用来指定热力学平衡系统的变量的外推。非平衡态热力学与输运过程和化学反应速率有关。它依赖于被认为是或多或少接近热力学平衡的东西。
| + | '''<font color="#ff8000"> 非平衡热力学'''Non-equilibrium thermodynamics</font>'''是热力学的一个分支,它处理的物理系统并不处于'''<font color="#ff8000"> 热力学平衡状态Thermodynamic equilibrium </font>''',不过可以通过变量(非平衡状态变量)来进行描述,相对于对处于热力学平衡状态下的指定系统进行变量外推。非平衡热力学与系统某一性质在物系内部的运输过程和化学反应速率有关。它仍然或多或少地取决于热力学平衡。 |
| | | |
| | | |
第17行: |
第17行: |
| Almost all systems found in nature are not in thermodynamic equilibrium, for they are changing or can be triggered to change over time, and are continuously and discontinuously subject to flux of matter and energy to and from other systems and to chemical reactions. Some systems and processes are, however, in a useful sense, near enough to thermodynamic equilibrium to allow description with useful accuracy by currently known non-equilibrium thermodynamics. Nevertheless, many natural systems and processes will always remain far beyond the scope of non-equilibrium thermodynamic methods due to the existence of non variational dynamics, where the concept of free energy is lost. | | Almost all systems found in nature are not in thermodynamic equilibrium, for they are changing or can be triggered to change over time, and are continuously and discontinuously subject to flux of matter and energy to and from other systems and to chemical reactions. Some systems and processes are, however, in a useful sense, near enough to thermodynamic equilibrium to allow description with useful accuracy by currently known non-equilibrium thermodynamics. Nevertheless, many natural systems and processes will always remain far beyond the scope of non-equilibrium thermodynamic methods due to the existence of non variational dynamics, where the concept of free energy is lost. |
| | | |
− | 几乎所有在自然界中发现的系统都不在热力学平衡中,因为它们在不断变化或者可以被触发随着时间而变化,并且不断不断地受到来自其他系统和化学反应的物质和能量流动的影响。然而,某些系统和进程在某种意义上是有用的,它们接近热力学平衡,足以允许目前已知的非平衡态热力学对其进行有用的精确描述。然而,由于非变分动力学的存在,许多自然系统和过程总是远远超出非平衡热力学方法的范围,自由能的概念丢失了。
| + | 自然界中,几乎所有系统都不处于热力学平衡状态。因为它们时刻在变化,或者因某些外界因素触发而产生变化。它们会断断续续地受到其他系统的物质和能量通量的影响,反之亦然。同时它们还会不间断的进行化学反应。但是部分系统及其热力学反应过程在某种有效的意义上,是接近于热力学平衡的。因此,允许就目前所知的非平衡热力学理论对系统进行准确性描述。然而,仍然有许多自然系统和其热力学反应过程远远超出了非平衡热力学方法的描述能力范围,由于非变分动力学的存在,自由能的概念并未被考虑。 |
| | | |
| | | |
第25行: |
第25行: |
| The thermodynamic study of non-equilibrium systems requires more general concepts than are dealt with by equilibrium thermodynamics. One fundamental difference between equilibrium thermodynamics and non-equilibrium thermodynamics lies in the behaviour of inhomogeneous systems, which require for their study knowledge of rates of reaction which are not considered in equilibrium thermodynamics of homogeneous systems. This is discussed below. Another fundamental and very important difference is the difficulty or impossibility, in general, in defining entropy at an instant of time in macroscopic terms for systems not in thermodynamic equilibrium; it can be done, to useful approximation, only in carefully chosen special cases, namely those that are throughout in local thermodynamic equilibrium. | | The thermodynamic study of non-equilibrium systems requires more general concepts than are dealt with by equilibrium thermodynamics. One fundamental difference between equilibrium thermodynamics and non-equilibrium thermodynamics lies in the behaviour of inhomogeneous systems, which require for their study knowledge of rates of reaction which are not considered in equilibrium thermodynamics of homogeneous systems. This is discussed below. Another fundamental and very important difference is the difficulty or impossibility, in general, in defining entropy at an instant of time in macroscopic terms for systems not in thermodynamic equilibrium; it can be done, to useful approximation, only in carefully chosen special cases, namely those that are throughout in local thermodynamic equilibrium. |
| | | |
− | 非平衡体系的热力学研究比平衡态热力学研究需要更多的一般概念。平衡态热力学和非平衡态热力学之间的一个根本区别在于非均匀系统的行为,这种行为要求他们研究在均匀系统的平衡态热力学中没有考虑的反应速率的知识。下面将讨论这一点。另一个基本的和非常重要的区别是,在一般情况下,难以或不可能用宏观条件来定义非热力学平衡的系统在瞬间的熵; 它可以做到,有用的近似,只有在精心选择的特殊情况下,即那些在整个局部热力学平衡。
| + | 非平衡系统的热力学研究比平衡热力学需要懂更多的专业概念知识。非平衡热力学与平衡热力学之间的一个根本区别在于其非均相系统的性质,这就要求研究者们对关于反应速率的相关知识有一定的掌握,而均相系统的平衡热力学中并未考虑这一点。这将在下面章节进行讨论。另一个根本且非常重要的区别是,对于不是处于热力学平衡状态的系统,想在宏观上来定义'''<font color="#ff8000"> 熵Entropy</font>'''的瞬间非常困难,或者说几乎是不可能的。只有在精心挑选的特殊情况下,即局部处于热力学平衡状态的情况下,才能做到有效地近似。 |
| | | |
| | | |