更改

跳到导航 跳到搜索
删除2,991字节 、 2020年11月27日 (五) 17:35
第238行: 第238行:  
爱德华·米尔恩Edward A. Milne在研究恒星时,根据每个局部“小单元”中物质的热辐射来定义“局部热力学平衡”。他通过设定“吸收并自发辐射(宏观意义上)”这一基本要求,定义研究对象处在“细胞”物质温度的空腔中,类似辐射平衡状态一样。然后,它严格遵守关于辐射发射率和吸收率相等的基尔霍夫定律Kirchhoff's law,以及黑体源函数。这里达到局部热力学平衡的关键在于重要物质颗粒的碰撞速率,例如分子应远远超过光子的产生和湮灭的速率。
 
爱德华·米尔恩Edward A. Milne在研究恒星时,根据每个局部“小单元”中物质的热辐射来定义“局部热力学平衡”。他通过设定“吸收并自发辐射(宏观意义上)”这一基本要求,定义研究对象处在“细胞”物质温度的空腔中,类似辐射平衡状态一样。然后,它严格遵守关于辐射发射率和吸收率相等的基尔霍夫定律Kirchhoff's law,以及黑体源函数。这里达到局部热力学平衡的关键在于重要物质颗粒的碰撞速率,例如分子应远远超过光子的产生和湮灭的速率。
   −
==Entropy in evolving systems==
+
== Entropy in evolving systems 进化系统中的熵 ==
 
  −
{{NumBlk|:|<math>
  −
 
  −
{{ NumBlk | : | < math >
      
It is pointed out by W.T. Grandy Jr,<ref>{{cite journal | doi = 10.1023/B:FOOP.0000012007.06843.ed | title = Time Evolution in Macroscopic Systems. I. Equations of Motion | year = 2004 | last1 = Grandy | first1 = W.T., Jr. | journal = Foundations of Physics | volume = 34 | issue = 1 | page = 1 |url=http://physics.uwyo.edu/~tgrandy/evolve.html |arxiv = cond-mat/0303290 |bibcode = 2004FoPh...34....1G }}</ref><ref>{{cite journal | url=http://physics.uwyo.edu/~tgrandy/entropy.html | doi=10.1023/B:FOOP.0000012008.36856.c1 | title=Time Evolution in Macroscopic Systems. II. The Entropy | year=2004 | last1=Grandy | first1=W.T., Jr. | journal=Foundations of Physics | volume=34 | issue=1 | page=21 |arxiv = cond-mat/0303291 |bibcode = 2004FoPh...34...21G | s2cid=18573684 }}</ref><ref>{{cite journal | url=http://physics.uwyo.edu/~tgrandy/applications.html | doi = 10.1023/B:FOOP.0000022187.45866.81 | title=Time Evolution in Macroscopic Systems. III: Selected Applications | year=2004 | last1=Grandy | first1=W. T., Jr | journal=Foundations of Physics | volume=34 | issue=5 | page=771 |bibcode = 2004FoPh...34..771G | s2cid = 119406182 }}</ref><ref>Grandy 2004 see also [http://physics.uwyo.edu/~tgrandy/Statistical_Mechanics.html].</ref> that entropy, though it may be defined for a non-equilibrium system is—when strictly considered—only a macroscopic quantity that refers to the whole system, and is not a dynamical variable and in general does not act as a local potential that describes local physical forces. Under special circumstances, however, one can metaphorically think as if the thermal variables behaved like local physical forces. The approximation that constitutes classical irreversible thermodynamics is built on this metaphoric thinking.
 
It is pointed out by W.T. Grandy Jr,<ref>{{cite journal | doi = 10.1023/B:FOOP.0000012007.06843.ed | title = Time Evolution in Macroscopic Systems. I. Equations of Motion | year = 2004 | last1 = Grandy | first1 = W.T., Jr. | journal = Foundations of Physics | volume = 34 | issue = 1 | page = 1 |url=http://physics.uwyo.edu/~tgrandy/evolve.html |arxiv = cond-mat/0303290 |bibcode = 2004FoPh...34....1G }}</ref><ref>{{cite journal | url=http://physics.uwyo.edu/~tgrandy/entropy.html | doi=10.1023/B:FOOP.0000012008.36856.c1 | title=Time Evolution in Macroscopic Systems. II. The Entropy | year=2004 | last1=Grandy | first1=W.T., Jr. | journal=Foundations of Physics | volume=34 | issue=1 | page=21 |arxiv = cond-mat/0303291 |bibcode = 2004FoPh...34...21G | s2cid=18573684 }}</ref><ref>{{cite journal | url=http://physics.uwyo.edu/~tgrandy/applications.html | doi = 10.1023/B:FOOP.0000022187.45866.81 | title=Time Evolution in Macroscopic Systems. III: Selected Applications | year=2004 | last1=Grandy | first1=W. T., Jr | journal=Foundations of Physics | volume=34 | issue=5 | page=771 |bibcode = 2004FoPh...34..771G | s2cid = 119406182 }}</ref><ref>Grandy 2004 see also [http://physics.uwyo.edu/~tgrandy/Statistical_Mechanics.html].</ref> that entropy, though it may be defined for a non-equilibrium system is—when strictly considered—only a macroscopic quantity that refers to the whole system, and is not a dynamical variable and in general does not act as a local potential that describes local physical forces. Under special circumstances, however, one can metaphorically think as if the thermal variables behaved like local physical forces. The approximation that constitutes classical irreversible thermodynamics is built on this metaphoric thinking.
   −
S=S(T, x_1, x_2, , x_n; \xi_1, \xi_2,  \ldots)
+
WT Grandy Jr小W·T·格兰迪指出,尽管熵可能是为非平衡系统定义的,但严格来说,它只是一个宏观量,是指整个系统,不是动态变量,通常不充当描述局部物理力的局部势能。但是,在特殊情况下,人们可以隐喻地认为热变量的行为就像局部物理力一样。构成经典不可逆热力学的近似想法是建立在这种隐喻思维之上的。
   −
S = s (t,x1,x2,,xn; xi _ 1,xi _ 2,ldots)
     −
  −
  −
</math>|}}
  −
  −
[/math > | }
      
This point of view shares many points in common with the concept and the use of entropy in continuum thermomechanics,<ref>{{cite book| title = Rational Thermodynamics | year = 1984 | last1 = Truesdell | first1 = Clifford | publisher = Springer | edition = 2 }}</ref><ref>{{cite book| title = Continuum Thermomechanics | year = 2002 | last1 = Maugin | first1 = Gérard A. | publisher = Kluwer }}</ref><ref>{{cite book| title = The Mechanics and Thermodynamics of Continua | year = 2010 | last1 = Gurtin | first1 = Morton E. | publisher = Cambridge University Press }}</ref><ref>{{cite book| title = Thermodynamics of Materials with Memory: Theory and Applications | year = 2012| last1 = Amendola | first1 = Giovambattista | publisher = Springer }}</ref> which evolved completely independently of statistical mechanics and maximum-entropy principles.
 
This point of view shares many points in common with the concept and the use of entropy in continuum thermomechanics,<ref>{{cite book| title = Rational Thermodynamics | year = 1984 | last1 = Truesdell | first1 = Clifford | publisher = Springer | edition = 2 }}</ref><ref>{{cite book| title = Continuum Thermomechanics | year = 2002 | last1 = Maugin | first1 = Gérard A. | publisher = Kluwer }}</ref><ref>{{cite book| title = The Mechanics and Thermodynamics of Continua | year = 2010 | last1 = Gurtin | first1 = Morton E. | publisher = Cambridge University Press }}</ref><ref>{{cite book| title = Thermodynamics of Materials with Memory: Theory and Applications | year = 2012| last1 = Amendola | first1 = Giovambattista | publisher = Springer }}</ref> which evolved completely independently of statistical mechanics and maximum-entropy principles.
   −
The essential contribution to the thermodynamics of the non-equilibrium systems was brought by Prigogine, when he and his collaborators investigated the systems of chemically reacting substances. The stationary states of such systems exists due to exchange both particles and energy with the environment. In section 8 of the third chapter of his book, Prigogine has specified three contributions to the variation of entropy of the considered system at the given volume and constant temperature <math> T</math> . The increment of entropy <math> S</math> can be calculated according to the formula
+
这种观点与连续热力学中熵的概念和用法有很多共同点,而后者完全独立于统计力学和最大熵原理而发展。
 
  −
对非平衡系统热力学的本质贡献是由普里高金提出的,当时他和他的合作者研究了化学反应物质系统。由于粒子和能量与环境的交换,这类系统的静止状态是存在的。在他的书的第三章的第8节中,普里高金详细说明了在给定的体积和恒定的温度下,被考虑系统的熵的变化有三个贡献。根据该公式可以计算出熵的增量 s </math >
  −
 
  −
 
  −
 
  −
{{NumBlk|:|<math>
  −
 
  −
{{ NumBlk | : | < math >
  −
 
  −
===Entropy in non-equilibrium===
  −
 
  −
T\,dS = \Delta Q - \sum_{j} \, \Xi_{j} \,\Delta \xi_j  + \sum_{\alpha =1}^k\, \mu_\alpha \, \Delta N_\alpha.
  −
 
  −
T,dS = Delta q-sum { j } ,Xi { j } ,Delta Xi _ j + sum _ { alpha = 1} ^ k,mu _ alpha,Delta n _ alpha.
  −
 
        −
</math>|}}
     −
[/math > | }
+
=== Entropy in non-equilibrium 非平衡状态的熵===
    
To describe deviation of the thermodynamic system from equilibrium, in addition to constitutive variables <math>x_1, x_2, ..., x_n</math> that are used to fix the equilibrium state, as was described above, a set of variables <math>\xi_1, \xi_2,\ldots</math> that are called ''internal variables'' have been introduced. The equilibrium state is considered to be stable and the main property of the internal variables, as measures of [[non-equilibrium]] of the system, is their trending to disappear; the local law of disappearing can be written as relaxation equation for each internal variable
 
To describe deviation of the thermodynamic system from equilibrium, in addition to constitutive variables <math>x_1, x_2, ..., x_n</math> that are used to fix the equilibrium state, as was described above, a set of variables <math>\xi_1, \xi_2,\ldots</math> that are called ''internal variables'' have been introduced. The equilibrium state is considered to be stable and the main property of the internal variables, as measures of [[non-equilibrium]] of the system, is their trending to disappear; the local law of disappearing can be written as relaxation equation for each internal variable
   −
The first term on the right hand side of the equation presents a stream of thermal energy into the system; the last term—a stream of energy into the system coming with the stream of particles of substances <math> \Delta N_\alpha </math> that can be positive or negative, <math> \mu_\alpha</math> is chemical potential of substance <math> \alpha</math>. The middle term in (1) depicts energy dissipation (entropy production) due to the relaxation of internal variables <math> \xi_j</math>. In the case of chemically reacting substances, which was investigated by Prigogine, the internal variables appear to be measures of incompleteness of chemical reactions, that is measures of how much the considered system with chemical reactions is out of equilibrium. The theory can be generalised,
+
为了描述热力学系统与平衡之间的偏差,除了如上所述的用于固定平衡状态的本构变量<math>x_1, x_2, ..., x_n</math>外,还引入了一组称为内部变量的变量<math>\xi_1, \xi_2,\ldots</math>。平衡状态被认为是稳定的,内部变量的主要性质(作为系统的非平衡度量)趋于消失;消失的局部定律可以写成每个内部变量的弛豫方程
   −
方程式右边的第一项代表了进入系统的热能流; 最后一项ーー进入系统的能量流,伴随着粒子流进入系统,粒子流可以是正的也可以是负的。第一部分的中期描述了由于内部变量的松弛而引起的能量耗散(产生熵)。在化学反应物质的情况下,由普利戈金研究,内部变量似乎是测量不完全的化学反应,也就是测量多少考虑的体系与化学反应是不平衡的。这个理论可以推广,
      
{{NumBlk|:|<math>
 
{{NumBlk|:|<math>
   
\frac{d\xi_i}{dt} = - \frac{1}{\tau_i} \, \left(\xi_i - \xi_i^{(0)} \right),\quad i =1,\,2,\ldots ,  
 
\frac{d\xi_i}{dt} = - \frac{1}{\tau_i} \, \left(\xi_i - \xi_i^{(0)} \right),\quad i =1,\,2,\ldots ,  
 +
</math>|{{EquationRef|1}}}}
   −
<math>dS=\frac{1}{T}dU+\frac{p}{T}dV-\sum_{i=1}^s\frac{\mu_i}{T}dN_i</math>
  −
  −
{ t } dU + frac { p }{ t } dV-sum { i = 1} ^ s frac { mu _ i }{ t } dN _ i </math >
  −
  −
</math>|{{EquationRef|1}}}}
      
where <math> \tau_i= \tau_i(T, x_1, x_2, \ldots, x_n)</math> is a relaxation time of a corresponding variables. It is convenient to consider the initial value <math> \xi_i^0</math> are equal to zero. The above equation is valid for small deviations from equilibrium; The dynamics of internal variables in general case is considered by Pokrovskii.<ref name="dx.doi.org">Pokrovskii V.N. (2013) A derivation of the main relations of non-equilibrium thermodynamics. Hindawi Publishing Corporation: ISRN Thermodynamics, vol. 2013, article ID 906136, 9 p.  https://dx.doi.org/10.1155/2013/906136.</ref>
 
where <math> \tau_i= \tau_i(T, x_1, x_2, \ldots, x_n)</math> is a relaxation time of a corresponding variables. It is convenient to consider the initial value <math> \xi_i^0</math> are equal to zero. The above equation is valid for small deviations from equilibrium; The dynamics of internal variables in general case is considered by Pokrovskii.<ref name="dx.doi.org">Pokrovskii V.N. (2013) A derivation of the main relations of non-equilibrium thermodynamics. Hindawi Publishing Corporation: ISRN Thermodynamics, vol. 2013, article ID 906136, 9 p.  https://dx.doi.org/10.1155/2013/906136.</ref>
   −
expresses the change in entropy <math>dS</math> of a system as a function of the intensive quantities temperature <math>T</math>, pressure <math>p</math> and <math>i^{th}</math> chemical potential <math>\mu_i</math> and of the differentials of the extensive quantities energy <math>U</math>, volume <math>V</math> and <math>i^{th}</math> particle number <math>N_i</math>.
+
其中<math> \tau_i= \tau_i(T, x_1, x_2, \ldots, x_n)</math>是相应变量的弛豫时间。出于方便考虑初始值<math> \xi_i^0</math>等于零。上面的方程对于偏离平衡态的小偏差是有效的;通常情况下,内部变量的动力学可以按照Pokrovskii的方法考虑。
 
  −
表示系统熵的变化是密集量,温度,数学,压力,数学,化学势,以及大量能量的微分的函数。
            
Entropy of the system in non-equilibrium is a function of the total set of variables  
 
Entropy of the system in non-equilibrium is a function of the total set of variables  
 +
系统在非平衡状态下的熵相当于变量总数的函数
   −
Following Onsager (1931,I), concludes that one model of atmospheric dynamics has an attractor which is not a regime of maximum or minimum dissipation; she says this seems to rule out the existence of a global organizing principle, and comments that this is to some extent disappointing; she also points to the difficulty of finding a thermodynamically consistent form of entropy production. Another top expert offers an extensive discussion of the possibilities for principles of extrema of entropy production and of dissipation of energy: Chapter 12 of Grandy (2008) Theoretical analysis shows that chemical reactions do not obey extremal principles for the second differential of time rate of entropy production. The development of a general extremal principle seems infeasible in the current state of knowledge.
  −
  −
在 Onsager (1931,i)之后,她得出结论,大气动力学的一个模型有一个吸引子,它不是最大或最小耗散制度; 她说,这似乎排除了全球组织原则的存在,并评论说,这在某种程度上是令人失望的; 她还指出,很难找到一个热力学上一致的形式的产生熵。另一位顶尖专家对产生熵极值原理和能量耗散原理的可能性进行了广泛的讨论: Grandy 第12章(2008)理论分析表明,化学反应在产生熵的第二个时间速率微分中不遵守极值原理。在目前的知识状态下,发展一般的极值原理似乎是不可行的。
      
{{NumBlk|:|<math>
 
{{NumBlk|:|<math>
   
S=S(T, x_1, x_2, , x_n; \xi_1, \xi_2,  \ldots)  
 
S=S(T, x_1, x_2, , x_n; \xi_1, \xi_2,  \ldots)  
   
</math>|{{EquationRef|1}}}}
 
</math>|{{EquationRef|1}}}}
   −
Non-equilibrium thermodynamics has been successfully applied to describe biological processes such as protein folding/unfolding and transport through membranes.
  −
  −
非平衡态热力学已成功地应用于描述蛋白质折叠/去折叠和通过膜转运等生物学过程。
      
The essential contribution to the thermodynamics of the [[non-equilibrium systems]] was brought by [[Prigogine]], when he and his collaborators investigated the systems of chemically reacting substances. The stationary states of such systems exists due to exchange both particles and energy with the environment. In section 8 of the third chapter of his book,<ref>[[Ilya Prigogine|Prigogine, I.]] (1955/1961/1967). ''Introduction to Thermodynamics of Irreversible Processes''. 3rd edition, Wiley Interscience, New York.</ref> Prigogine has specified three contributions to the variation of entropy of the considered system at the given volume and constant temperature <math> T</math> . The increment of [[entropy]] <math> S</math> can be calculated according to the formula  
 
The essential contribution to the thermodynamics of the [[non-equilibrium systems]] was brought by [[Prigogine]], when he and his collaborators investigated the systems of chemically reacting substances. The stationary states of such systems exists due to exchange both particles and energy with the environment. In section 8 of the third chapter of his book,<ref>[[Ilya Prigogine|Prigogine, I.]] (1955/1961/1967). ''Introduction to Thermodynamics of Irreversible Processes''. 3rd edition, Wiley Interscience, New York.</ref> Prigogine has specified three contributions to the variation of entropy of the considered system at the given volume and constant temperature <math> T</math> . The increment of [[entropy]] <math> S</math> can be calculated according to the formula  
   −
It is also used to give a description of the dynamics of nanoparticles, which can be out of equilibrium in systems where catalysis and electrochemical conversion is involved.
+
普利高因Prigogine在他和他的合作者研究化学反应物质的系统时,对非平衡系统的热力学做出了重要贡献。由于与环境交换粒子和能量,因此是存在这种稳态的系统。在他的书的第三章第8节中,Prigogine指定了在给定体积和恒定温度<math> T</math>下所考虑的系统熵变化的三个贡献。可以根据以下公式计算熵的增量S
   −
它也被用来描述纳米颗粒的动力学,在涉及催化和电化学转化的系统中,纳米颗粒可以失去平衡。
      
{{NumBlk|:|<math>
 
{{NumBlk|:|<math>
  −
Also, ideas from non-equilibrium thermodynamics and the informatic theory of entropy have been adapted to describe general economic systems.
  −
  −
此外,来自非平衡态热力学的思想和熵的信息论已经被用来描述一般的经济系统。
  −
   
T\,dS = \Delta Q - \sum_{j} \, \Xi_{j} \,\Delta \xi_j  + \sum_{\alpha =1}^k\, \mu_\alpha \, \Delta N_\alpha.
 
T\,dS = \Delta Q - \sum_{j} \, \Xi_{j} \,\Delta \xi_j  + \sum_{\alpha =1}^k\, \mu_\alpha \, \Delta N_\alpha.
 +
</math>|{{EquationRef|1}}}}
   −
</math>|{{EquationRef|1}}}}
      
The first term on the right hand side of the equation presents a stream of thermal energy into the system; the last term—a stream of energy into the system coming with the stream of particles of substances <math> \Delta N_\alpha </math> that can be positive or negative, <math> \mu_\alpha</math> is [[chemical potential]] of substance <math> \alpha</math>. The middle term in (1) depicts [[energy dissipation]] ([[entropy production]]) due to the relaxation of internal variables <math> \xi_j</math>. In the case of chemically reacting substances, which was investigated by Prigogine, the internal variables appear to be measures of incompleteness of chemical reactions, that is measures of how much the considered system with chemical reactions is out of equilibrium. The theory can be generalised,<ref>Pokrovskii V.N. (2005) Extended thermodynamics in a discrete-system approach,  Eur. J. Phys.  vol. 26,  769-781.</ref><ref name="dx.doi.org"/> to consider any deviation from the equilibrium state as an internal variable, so that we consider the set of internal variables <math> \xi_j</math> in equation (1) to consist of the quantities defining not only degrees of completeness of all chemical reactions occurring in the system, but also the structure of the system, gradients of temperature, difference of concentrations of substances and so on.
 
The first term on the right hand side of the equation presents a stream of thermal energy into the system; the last term—a stream of energy into the system coming with the stream of particles of substances <math> \Delta N_\alpha </math> that can be positive or negative, <math> \mu_\alpha</math> is [[chemical potential]] of substance <math> \alpha</math>. The middle term in (1) depicts [[energy dissipation]] ([[entropy production]]) due to the relaxation of internal variables <math> \xi_j</math>. In the case of chemically reacting substances, which was investigated by Prigogine, the internal variables appear to be measures of incompleteness of chemical reactions, that is measures of how much the considered system with chemical reactions is out of equilibrium. The theory can be generalised,<ref>Pokrovskii V.N. (2005) Extended thermodynamics in a discrete-system approach,  Eur. J. Phys.  vol. 26,  769-781.</ref><ref name="dx.doi.org"/> to consider any deviation from the equilibrium state as an internal variable, so that we consider the set of internal variables <math> \xi_j</math> in equation (1) to consist of the quantities defining not only degrees of completeness of all chemical reactions occurring in the system, but also the structure of the system, gradients of temperature, difference of concentrations of substances and so on.
   −
 
+
等式右边的第一项表示进入系统的热能流。最后一项是进入系统的能量流与可能为正或负的物质粒子流<math> \Delta N_\alpha </math>一起出现,<math> \mu_\alpha</math>为物质<math> \alpha</math>的'''<font color="#ff8000"> 化学势Chemical potential</font>'''。(1)中的中间项描述了由于内部变量<math> \xi_j</math>的松弛而导致的'''<font color="#ff8000"> 能量耗散Energy dissipation</font>'''(熵产生)。就化学反应物质而言(由Prigogine调查),内部变量似乎是化学反应不完整的量度,即所考虑的具有化学反应的系统失衡程度。该理论可以推广为,与平衡状态的任何偏差视为内部变量,因此我们认为方程式(1)中的内部变量<math> \xi_j</math>不仅由定义系统中发生的所有化学反应的完成度量组成,而且还有系统的结构,温度梯度,物质浓度的差异等等组成。
    
==Flows and forces==
 
==Flows and forces==
961

个编辑

导航菜单