第210行: |
第210行: |
| 在一个[[离散和连续时间|离散时间]]系统中,<font color="#ff8000"> 吸引子</font>可以以有限数量的点的形式依次访问。每个点都称为[[周期点]]。[[逻辑图]]说明了这一点,根据其特定参数值,对于任何“n”值,可以有由2<sup>''n''</sup>点、3×2<sup>''n''</sup>点等组成的<font color="#ff8000"> 吸引子</font>。 | | 在一个[[离散和连续时间|离散时间]]系统中,<font color="#ff8000"> 吸引子</font>可以以有限数量的点的形式依次访问。每个点都称为[[周期点]]。[[逻辑图]]说明了这一点,根据其特定参数值,对于任何“n”值,可以有由2<sup>''n''</sup>点、3×2<sup>''n''</sup>点等组成的<font color="#ff8000"> 吸引子</font>。 |
| | | |
− | === Limit cycle === | + | === Limit cycle 极限环=== |
| | | |
| {{main|Limit cycle}} | | {{main|Limit cycle}} |
| + | {{main |极限环}} |
| | | |
| A [[limit cycle]] is a periodic orbit of a continuous dynamical system that is [[isolated point|isolated]]. Examples include the swings of a [[pendulum clock]], and the heartbeat while resting. (The limit cycle of an ideal pendulum is not an example of a limit cycle attractor because its orbits are not isolated: in the phase space of the ideal pendulum, near any point of a periodic orbit there is another point that belongs to a different periodic orbit, so the former orbit is not attracting). | | A [[limit cycle]] is a periodic orbit of a continuous dynamical system that is [[isolated point|isolated]]. Examples include the swings of a [[pendulum clock]], and the heartbeat while resting. (The limit cycle of an ideal pendulum is not an example of a limit cycle attractor because its orbits are not isolated: in the phase space of the ideal pendulum, near any point of a periodic orbit there is another point that belongs to a different periodic orbit, so the former orbit is not attracting). |
第218行: |
第219行: |
| A limit cycle is a periodic orbit of a continuous dynamical system that is isolated. Examples include the swings of a pendulum clock, and the heartbeat while resting. (The limit cycle of an ideal pendulum is not an example of a limit cycle attractor because its orbits are not isolated: in the phase space of the ideal pendulum, near any point of a periodic orbit there is another point that belongs to a different periodic orbit, so the former orbit is not attracting). | | A limit cycle is a periodic orbit of a continuous dynamical system that is isolated. Examples include the swings of a pendulum clock, and the heartbeat while resting. (The limit cycle of an ideal pendulum is not an example of a limit cycle attractor because its orbits are not isolated: in the phase space of the ideal pendulum, near any point of a periodic orbit there is another point that belongs to a different periodic orbit, so the former orbit is not attracting). |
| | | |
− | 极限环是一个孤立的连续动力系统的周期轨道。例如摆钟的摆动,以及休息时的心跳。(理想摆的极限环不是极限环吸引子的例子,因为它的轨道不是孤立的: 在理想摆的相空间中,周期轨道的任何一点附近都有另一个点属于不同的周期轨道,所以前一个轨道不吸引)。
| + | [[极限环]]是连续动力系统的周期轨道,它是[[孤立点|孤立]]。例如[[钟摆时钟]]的摆动,以及休息时的心跳。(理想摆的极限环不是极限环吸引子的一个例子,因为它的轨道不是孤立的:在理想摆的相空间中,在一个周期轨道的任何一个点附近都有另一个点属于不同周期轨道,因此前一个轨道不具有吸引力)。 |
| | | |
| | | |
| | | |
| [[File:VanDerPolPhaseSpace.png|center|250px|thumb|<center>[[Van der Pol oscillator|Van der Pol]] [[phase portrait]]: an attracting limit cycle</center>]] | | [[File:VanDerPolPhaseSpace.png|center|250px|thumb|<center>[[Van der Pol oscillator|Van der Pol]] [[phase portrait]]: an attracting limit cycle</center>]] |
| + | |
| + | [[文件:VanDerPolPhaseSpace.png|center| 250px |拇指|<center>[[Van der Pol振荡器| Van der Pol]][[相位肖像]]:吸引极限环</center>]] |
| | | |
| Van der Pol phase portrait: an attracting limit cycle</center>]] | | Van der Pol phase portrait: an attracting limit cycle</center>]] |
| | | |
− | 范德波尔相图: 一个吸引极限环 </center > ] | + | 范德波尔相图: 一个吸引极限环 </center>]] |
− | | |
− | | |
| | | |
| === Limit torus === | | === Limit torus === |