更改

跳到导航 跳到搜索
添加173字节 、 2021年1月11日 (一) 17:51
无编辑摘要
第11行: 第11行:  
The Lotka–Volterra equations, also known as the predator–prey equations, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of equations:
 
The Lotka–Volterra equations, also known as the predator–prey equations, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of equations:
   −
Lotka-Volterra 方程又称捕食-食饵方程,是一对一阶非线性微分方程,常用于描述捕食者和食饵相互作用的生物系统的动力学行为。人口随时间变化,根据这一对方程:
+
Lotka–Volterra方程式(又称为猎食方程)是一对一阶非线性微分方程,它经常被用来描述两个物种间因相互作用,而产生的生物系统动力学反应。其中一个作为捕食者,而另一个作为猎物。其人口数量会随时间变化遵循如下一对方程组:
 +
 
    
:<math>
 
:<math>
  −
<math>
  −
  −
《数学》
  −
  −
\begin{align}
  −
   
\begin{align}
 
\begin{align}
  −
开始{ align }
  −
  −
\frac{dx}{dt} &= \alpha x - \beta x y, \\
  −
   
  \frac{dx}{dt} &= \alpha x - \beta x y, \\
 
  \frac{dx}{dt} &= \alpha x - \beta x y, \\
  −
和 = alpha x-beta x y,
  −
  −
\frac{dy}{dt} &= \delta x y - \gamma y,
  −
   
  \frac{dy}{dt} &= \delta x y - \gamma y,
 
  \frac{dy}{dt} &= \delta x y - \gamma y,
  −
和 = delta x y-gamma y,
  −
   
\end{align}
 
\end{align}
  −
\end{align}
  −
  −
结束{ align }
  −
  −
</math>
  −
   
</math>
 
</math>
   −
数学
  −
  −
where
  −
  −
where
  −
  −
在哪里
      +
Where,
 
:{{mvar|x}} is the number of prey (for example, [[rabbit]]s);
 
:{{mvar|x}} is the number of prey (for example, [[rabbit]]s);
  −
is the number of prey (for example, rabbits);
  −
  −
是猎物的数量(例如,兔子) ;
  −
   
:{{mvar|y}} is the number of some [[Predation|predator]] (for example, [[fox]]es);
 
:{{mvar|y}} is the number of some [[Predation|predator]] (for example, [[fox]]es);
  −
is the number of some predator (for example, foxes);
  −
  −
是某种捕食者(例如狐狸)的数量;
  −
   
:<math>\tfrac{dy}{dt}</math> and <math>\tfrac{dx}{dt}</math> represent the instantaneous growth rates of the two populations;
 
:<math>\tfrac{dy}{dt}</math> and <math>\tfrac{dx}{dt}</math> represent the instantaneous growth rates of the two populations;
  −
<math>\tfrac{dy}{dt}</math> and <math>\tfrac{dx}{dt}</math> represent the instantaneous growth rates of the two populations;
  −
  −
和 < math > tfrac { dx }{ dt </math > 代表两个人口的瞬时增长率;
  −
   
:{{mvar|t}} represents time;
 
:{{mvar|t}} represents time;
  −
represents time;
  −
  −
代表时间;
  −
   
:{{math|''α'', ''β'', ''γ'', ''δ''}} are positive real [[parameter]]s describing the interaction of the two [[species]].
 
:{{math|''α'', ''β'', ''γ'', ''δ''}} are positive real [[parameter]]s describing the interaction of the two [[species]].
   −
are positive real parameters describing the interaction of the two species.
+
where
 +
x is the number of prey (for example, rabbits);
 +
y is the number of some predator (for example, foxes);
 +
{\displaystyle {\tfrac {dy}{dt}}}{\tfrac {dy}{dt}} and {\displaystyle {\tfrac {dx}{dt}}}{\tfrac {dx}{dt}} represent the instantaneous growth rates of the two populations;
 +
t represents time;
 +
α, β, γ, δ are positive real parameters describing the interaction of the two species.
   −
是描述两个物种相互作用的正实参数。
+
其中:
 +
:{{mvar|x}}是猎物(例如兔子)的数量;
 +
:{{mvar|y}}是某些捕食者(例如狐狸)的数量;
 +
:<math>\tfrac{dy}{dt}</math> 和 <math>\tfrac{dx}{dt}</math>代表两个人口的瞬时增长率;
 +
:{{mvar|t}}代表时间;
 +
:{{math|''α'', ''β'', ''γ'', ''δ''}}是描述两个物种相互作用的正实参数。
      第91行: 第49行:  
The Lotka–Volterra system of equations is an example of a Kolmogorov model, which is a more general framework that can model the dynamics of ecological systems with predator–prey interactions, competition, disease, and mutualism.
 
The Lotka–Volterra system of equations is an example of a Kolmogorov model, which is a more general framework that can model the dynamics of ecological systems with predator–prey interactions, competition, disease, and mutualism.
   −
Lotka-沃尔泰拉方程组就是 Kolmogorov 模型的一个例子,该模型是一个更为通用的框架,可以为具有捕食者-食饵相互作用、竞争、疾病和互利共生的生态系统的动力学建模。
+
Lotka–Volterra方程式系统是Kolmogorov模型的一个示例,该模型是一个更通用的框架,可以利用捕食者与猎物之间的猎食,竞争,疾病和共生关系来模拟生态系统的动力学。
 
  −
 
     −
==History==
         +
== History 历史 ==
    
The Lotka–Volterra predator–prey [[mathematical model|model]] was initially proposed by [[Alfred J. Lotka]] in the theory of autocatalytic chemical reactions in 1910.<ref>{{cite journal|last=Lotka|first=A. J.|title=Contribution to the Theory of Periodic Reaction|journal=[[Journal of Physical Chemistry A|J. Phys. Chem.]]|volume=14|issue=3|pages=271–274|year=1910|doi=10.1021/j150111a004|url=https://zenodo.org/record/1428768}}</ref><ref name="Goelmany">{{cite book|last=Goel|first=N. S.|display-authors=etal|title=On the Volterra and Other Non-Linear Models of Interacting Populations|location=|publisher=Academic Press|year=1971}}</ref> This was effectively the [[Logistic function#In ecology: modeling population growth|logistic equation]],<ref>{{cite journal|last=Berryman|first=A. A.|url=http://entomology.wsu.edu/profiles/06BerrymanWeb/Berryman%2892%29Origins.pdf|title=The Origins and Evolution of Predator-Prey Theory|journal=[[Ecology (journal)|Ecology]]|volume=73|issue=5|pages=1530–1535|year=1992|url-status=dead|archive-url=https://web.archive.org/web/20100531204042/http://entomology.wsu.edu/profiles/06BerrymanWeb/Berryman%2892%29Origins.pdf|archive-date=2010-05-31|df=|doi=10.2307/1940005|jstor=1940005}}</ref> originally derived by [[Pierre François Verhulst]].<ref>{{cite journal|last=Verhulst|first=P. H.|url=https://books.google.com/books?id=8GsEAAAAYAAJ|title=Notice sur la loi que la population poursuit dans son accroissement|journal=Corresp. Mathématique et Physique|volume=10|issue=|pages=113–121|year=1838}}</ref> In 1920 Lotka extended the model, via [[Andrey Kolmogorov]], to "organic systems" using a plant species and a herbivorous animal species as an example<ref>{{cite journal|last=Lotka|first=A. J.|pmc=1084562|title=Analytical Note on Certain Rhythmic Relations in Organic Systems|journal=[[Proc. Natl. Acad. Sci. U.S.A.]]|volume=6|issue=7|pages=410–415|year=1920|doi=10.1073/pnas.6.7.410|pmid=16576509|bibcode=1920PNAS....6..410L}}</ref> and in 1925 he used the equations to analyse predator–prey interactions in his book on [[biomathematics]].<ref>{{cite book|last=Lotka|first=A. J.|title=Elements of Physical Biology|location=|publisher=[[Williams and Wilkins]]|year=1925}}</ref> The same set of equations was published in 1926 by [[Vito Volterra]], a mathematician and physicist, who had become interested in [[mathematical biology]].<ref name="Goelmany"/><ref>{{cite journal|last=Volterra|first=V.|title=Variazioni e fluttuazioni del numero d'individui in specie animali conviventi|journal=[[Accademia dei Lincei|Mem. Acad. Lincei Roma]]|volume=2|issue=|pages=31–113|year=1926}}</ref><ref>{{cite book|last=Volterra|first=V.|chapter=Variations and fluctuations of the number of individuals in animal species living together|title=Animal Ecology|editor-last=Chapman|editor-first=R. N.|location=|publisher=[[McGraw–Hill]]|year=1931}}</ref> Volterra's enquiry was inspired through his interactions with the marine biologist [[Umberto D'Ancona]], who was courting his daughter at the time and later was to become his son-in-law. D'Ancona studied the fish catches in the [[Adriatic Sea]] and had noticed that the percentage of predatory fish caught had increased during the years of [[World War I]] (1914–18). This puzzled him, as the fishing effort had been very much reduced during the war years. Volterra developed his model independently from Lotka and used it to explain d'Ancona's observation.<ref>{{cite book|last=Kingsland|first=S.|title=Modeling Nature: Episodes in the History of Population Ecology|location=|publisher=University of Chicago Press|year=1995|isbn=978-0-226-43728-6}}</ref>
 
The Lotka–Volterra predator–prey [[mathematical model|model]] was initially proposed by [[Alfred J. Lotka]] in the theory of autocatalytic chemical reactions in 1910.<ref>{{cite journal|last=Lotka|first=A. J.|title=Contribution to the Theory of Periodic Reaction|journal=[[Journal of Physical Chemistry A|J. Phys. Chem.]]|volume=14|issue=3|pages=271–274|year=1910|doi=10.1021/j150111a004|url=https://zenodo.org/record/1428768}}</ref><ref name="Goelmany">{{cite book|last=Goel|first=N. S.|display-authors=etal|title=On the Volterra and Other Non-Linear Models of Interacting Populations|location=|publisher=Academic Press|year=1971}}</ref> This was effectively the [[Logistic function#In ecology: modeling population growth|logistic equation]],<ref>{{cite journal|last=Berryman|first=A. A.|url=http://entomology.wsu.edu/profiles/06BerrymanWeb/Berryman%2892%29Origins.pdf|title=The Origins and Evolution of Predator-Prey Theory|journal=[[Ecology (journal)|Ecology]]|volume=73|issue=5|pages=1530–1535|year=1992|url-status=dead|archive-url=https://web.archive.org/web/20100531204042/http://entomology.wsu.edu/profiles/06BerrymanWeb/Berryman%2892%29Origins.pdf|archive-date=2010-05-31|df=|doi=10.2307/1940005|jstor=1940005}}</ref> originally derived by [[Pierre François Verhulst]].<ref>{{cite journal|last=Verhulst|first=P. H.|url=https://books.google.com/books?id=8GsEAAAAYAAJ|title=Notice sur la loi que la population poursuit dans son accroissement|journal=Corresp. Mathématique et Physique|volume=10|issue=|pages=113–121|year=1838}}</ref> In 1920 Lotka extended the model, via [[Andrey Kolmogorov]], to "organic systems" using a plant species and a herbivorous animal species as an example<ref>{{cite journal|last=Lotka|first=A. J.|pmc=1084562|title=Analytical Note on Certain Rhythmic Relations in Organic Systems|journal=[[Proc. Natl. Acad. Sci. U.S.A.]]|volume=6|issue=7|pages=410–415|year=1920|doi=10.1073/pnas.6.7.410|pmid=16576509|bibcode=1920PNAS....6..410L}}</ref> and in 1925 he used the equations to analyse predator–prey interactions in his book on [[biomathematics]].<ref>{{cite book|last=Lotka|first=A. J.|title=Elements of Physical Biology|location=|publisher=[[Williams and Wilkins]]|year=1925}}</ref> The same set of equations was published in 1926 by [[Vito Volterra]], a mathematician and physicist, who had become interested in [[mathematical biology]].<ref name="Goelmany"/><ref>{{cite journal|last=Volterra|first=V.|title=Variazioni e fluttuazioni del numero d'individui in specie animali conviventi|journal=[[Accademia dei Lincei|Mem. Acad. Lincei Roma]]|volume=2|issue=|pages=31–113|year=1926}}</ref><ref>{{cite book|last=Volterra|first=V.|chapter=Variations and fluctuations of the number of individuals in animal species living together|title=Animal Ecology|editor-last=Chapman|editor-first=R. N.|location=|publisher=[[McGraw–Hill]]|year=1931}}</ref> Volterra's enquiry was inspired through his interactions with the marine biologist [[Umberto D'Ancona]], who was courting his daughter at the time and later was to become his son-in-law. D'Ancona studied the fish catches in the [[Adriatic Sea]] and had noticed that the percentage of predatory fish caught had increased during the years of [[World War I]] (1914–18). This puzzled him, as the fishing effort had been very much reduced during the war years. Volterra developed his model independently from Lotka and used it to explain d'Ancona's observation.<ref>{{cite book|last=Kingsland|first=S.|title=Modeling Nature: Episodes in the History of Population Ecology|location=|publisher=University of Chicago Press|year=1995|isbn=978-0-226-43728-6}}</ref>
第103行: 第59行:  
The Lotka–Volterra predator–prey model was initially proposed by Alfred J. Lotka in the theory of autocatalytic chemical reactions in 1910. This was effectively the logistic equation, originally derived by Pierre François Verhulst. In 1920 Lotka extended the model, via Andrey Kolmogorov, to "organic systems" using a plant species and a herbivorous animal species as an example and in 1925 he used the equations to analyse predator–prey interactions in his book on biomathematics. The same set of equations was published in 1926 by Vito Volterra, a mathematician and physicist, who had become interested in mathematical biology. Volterra's enquiry was inspired through his interactions with the marine biologist Umberto D'Ancona, who was courting his daughter at the time and later was to become his son-in-law. D'Ancona studied the fish catches in the Adriatic Sea and had noticed that the percentage of predatory fish caught had increased during the years of World War I (1914–18). This puzzled him, as the fishing effort had been very much reduced during the war years. Volterra developed his model independently from Lotka and used it to explain d'Ancona's observation.
 
The Lotka–Volterra predator–prey model was initially proposed by Alfred J. Lotka in the theory of autocatalytic chemical reactions in 1910. This was effectively the logistic equation, originally derived by Pierre François Verhulst. In 1920 Lotka extended the model, via Andrey Kolmogorov, to "organic systems" using a plant species and a herbivorous animal species as an example and in 1925 he used the equations to analyse predator–prey interactions in his book on biomathematics. The same set of equations was published in 1926 by Vito Volterra, a mathematician and physicist, who had become interested in mathematical biology. Volterra's enquiry was inspired through his interactions with the marine biologist Umberto D'Ancona, who was courting his daughter at the time and later was to become his son-in-law. D'Ancona studied the fish catches in the Adriatic Sea and had noticed that the percentage of predatory fish caught had increased during the years of World War I (1914–18). This puzzled him, as the fishing effort had been very much reduced during the war years. Volterra developed his model independently from Lotka and used it to explain d'Ancona's observation.
   −
洛特卡-沃尔泰拉捕食-被捕食模型最初是由阿尔弗雷德 · j · 洛特卡于1910年在自催化化学反应理论中提出的。这实际上就是逻辑方程式,最初由皮埃尔·弗朗索瓦·韦吕勒推导出来。1920年,Lotka 通过安德雷·柯尔莫哥洛夫,将这个模型扩展到“有机系统” ,以植物物种和草食动物物种为例,1925年,他在其关于生物数学的书中用这些方程分析了捕食者-猎物的相互作用。1926年,对数学生物学感兴趣的数学家和物理学家维托 · 沃尔泰拉发表了同样的方程组。沃尔泰拉的调查灵感来自于他与海洋生物学家翁贝托•安科纳(Umberto d’ ancona)的互动。安科纳当时正在追求自己的女儿,后来成了他的女婿。D’ ancona 研究了亚得里亚海的鱼类捕获量,并注意到在第一次世界大战期间(1914-1918年)捕获的捕食性鱼类的百分比有所增加。这使他感到困惑,因为在战争年代,捕鱼的努力大大减少了。沃尔泰拉独立于 Lotka 发展了他的模型,并用它来解释 d’ ancona 的观察。
+
Lotka–Volterra猎捕模型最初是由阿尔弗雷德·J·洛特卡(Alfred J. Lotka)于1910年在自催化化学反应理论中提出的。这个模型最初实际上是源于皮埃尔·弗朗索瓦·韦吕勒Pierre François Verhulst得出的逻辑方程。1920年,洛特卡通过Andrey Kolmogorov将该模型扩展到了“有机系统”,以植物和草食性动物为例,并于1925年在他的生物数学书中使用这些方程式分析了捕食者与猎物之间的相互作用。1926年,数学家和物理学家维托·沃尔泰拉Vito Volterra发表了同样的方程组。沃尔泰拉对数学生物学非常感兴趣。他对此的探索是受到他与海洋生物学家翁贝托·德安科纳Umberto D'Ancona互动的启发,后者当时正好向的女儿求婚,不久便成了他的女婿。德安科纳研究了亚得里亚海的渔获物,并注意到在第一次世界大战期间(1914-1918年),捕捞的掠食性鱼类其百分比有所增加。这使他感到困惑,因为在战争年代,捕鱼工作已大大减少。沃尔泰拉独立于洛特卡开发了他的模型,并用它来解释德安科纳的观察结果。
      第111行: 第67行:  
The model was later extended to include density-dependent prey growth and a functional response of the form developed by C. S. Holling; a model that has become known as the Rosenzweig–MacArthur model. Both the Lotka–Volterra and Rosenzweig–MacArthur models have been used to explain the dynamics of natural populations of predators and prey, such as the lynx and snowshoe hare data of the Hudson's Bay Company and the moose and wolf populations in Isle Royale National Park.
 
The model was later extended to include density-dependent prey growth and a functional response of the form developed by C. S. Holling; a model that has become known as the Rosenzweig–MacArthur model. Both the Lotka–Volterra and Rosenzweig–MacArthur models have been used to explain the dynamics of natural populations of predators and prey, such as the lynx and snowshoe hare data of the Hudson's Bay Company and the moose and wolf populations in Isle Royale National Park.
   −
该模型后来被扩展到包括密度依赖的猎物生长和由 C.s. 霍林开发的功能性反应形式,这个模型后来被称为 Rosenzweig-MacArthur 模型。Lotka-Volterra 模型和 Rosenzweig-MacArthur 模型都被用来解释捕食者和猎物的自然种群动态,例如哈德逊湾公司的猞猁和雪鞋兔的数据,以及皇家岛国家公园的驼鹿和狼的种群数据。
+
该模型后来得到进一步扩展,包括基于密度依赖的猎物生长机制和由C. S. Holling开发的功能响应机制。该模型后被称为Rosenzweig–MacArthur模型。Lotka–Volterra和Rosenzweig–MacArthur模型现均用于解释捕猎双方自然种群的动态,例如哈德逊湾公司的山猫和雪鞋野兔数据,以及皇家岛国家公园的麋鹿和狼种群。
      第119行: 第75行:  
In the late 1980s, an alternative to the Lotka–Volterra predator–prey model (and its common-prey-dependent generalizations) emerged, the ratio dependent or Arditi–Ginzburg model. The validity of prey- or ratio-dependent models has been much debated.
 
In the late 1980s, an alternative to the Lotka–Volterra predator–prey model (and its common-prey-dependent generalizations) emerged, the ratio dependent or Arditi–Ginzburg model. The validity of prey- or ratio-dependent models has been much debated.
   −
在20世纪80年代后期,出现了一种替代 Lotka-沃尔泰拉捕食-被捕食模型(及其普通-被捕食依赖的一般化)的模型,即比率依赖模型或 Arditi-Ginzburg 模型。食饵或比率依赖模型的有效性一直备受争议。
+
在1980年代后期,出现了Lotka–Volterra捕猎模型(泛指常规食饵依赖模型)的替代模型,即比率依赖模型或Arditi–Ginzburg模型。即使到现在。食饵依赖和比率依赖模型的有效性一直存在争议。
      第127行: 第83行:  
The Lotka–Volterra equations have a long history of use in economic theory; their initial application is commonly credited to Richard Goodwin in 1965 or 1967.
 
The Lotka–Volterra equations have a long history of use in economic theory; their initial application is commonly credited to Richard Goodwin in 1965 or 1967.
   −
洛特卡-沃尔泰拉方程在经济理论中的应用由来已久,它们最初的应用通常归功于理查德•古德温(Richard Goodwin)在1965年或1967年提出的理论。
+
Lotka-Volterra方程在经济理论中存在了很久。他们最初是由Richard Goodwin在1965或1967年应用过。
         −
==Physical meaning of the equations==
+
== Physical meaning of the equations 方程的物理意义 ==
    
The Lotka–Volterra model makes a number of assumptions, not necessarily realizable in nature, about the environment and evolution of the predator and prey populations:<ref>{{Cite web|url=http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html|title=PREDATOR-PREY DYNAMICS|website=www.tiem.utk.edu|access-date=2018-01-09}}</ref>
 
The Lotka–Volterra model makes a number of assumptions, not necessarily realizable in nature, about the environment and evolution of the predator and prey populations:<ref>{{Cite web|url=http://www.tiem.utk.edu/~gross/bioed/bealsmodules/predator-prey.html|title=PREDATOR-PREY DYNAMICS|website=www.tiem.utk.edu|access-date=2018-01-09}}</ref>
第137行: 第93行:  
The Lotka–Volterra model makes a number of assumptions, not necessarily realizable in nature, about the environment and evolution of the predator and prey populations:
 
The Lotka–Volterra model makes a number of assumptions, not necessarily realizable in nature, about the environment and evolution of the predator and prey populations:
   −
Lotka-Volterra 模型对捕食者和被捕食者种群的环境和进化做出了许多假设,但这些假设在自然界中不一定是可实现的:
+
Lotka–Volterra模型对捕猎双方的环境和进化做出了许多假设,这些假设在自然界过于理想而不一定能实现:
 
  −
#The prey population finds ample food at all times.
  −
 
  −
The prey population finds ample food at all times.
  −
 
  −
猎物总能找到充足的食物。
  −
 
  −
#The food supply of the predator population depends entirely on the size of the prey population.
  −
 
  −
The food supply of the predator population depends entirely on the size of the prey population.
  −
 
  −
捕食者种群的食物供应完全取决于猎物种群的大小。
  −
 
  −
#The rate of change of population is proportional to its size.
  −
 
  −
The rate of change of population is proportional to its size.
  −
 
  −
人口的变化率与其规模成正比。
  −
 
  −
#During the process, the environment does not change in favour of one species, and genetic adaptation is inconsequential.
     −
During the process, the environment does not change in favour of one species, and genetic adaptation is inconsequential.
     −
在这个过程中,环境并没有因为某一物种而改变,基因的适应也是无关紧要的。
     −
#Predators have limitless appetite.
+
* The prey population finds ample food at all times.
 +
* The food supply of the predator population depends entirely on the size of the prey population.
 +
* The rate of change of population is proportional to its size.
 +
* During the process, the environment does not change in favour of one species, and genetic adaptation is inconsequential.
 +
* Predators have limitless appetite.
   −
Predators have limitless appetite.
+
* The prey population finds ample food at all times.
 +
* The food supply of the predator population depends entirely on the size of the prey population.
 +
* The rate of change of population is proportional to its size.
 +
* During the process, the environment does not change in favour of one species, and genetic adaptation is inconsequential.
 +
* Predators have limitless appetite.
   −
食肉动物有无限的食欲。
+
* 猎物随时都有充足的食物。
 +
* 捕食者种群的食物供应完全取决于猎物种群的大小。
 +
* 各种群数量变化率与其规模成正比。
 +
* 在此过程中,环境不会因一种物种而改变,并且无关于遗传适应性。
 +
* 食肉动物有无限的食欲。
      第175行: 第121行:  
In this case the solution of the differential equations is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.
 
In this case the solution of the differential equations is deterministic and continuous. This, in turn, implies that the generations of both the predator and prey are continually overlapping.
   −
在这种情况下,微分方程的解是确定的和连续的。反过来,这意味着捕食者和被捕食者的世代是不断重叠的。
+
在这种情况下,微分方程的解是确定并连续的。反过来,这也意味着掠食者和猎物的世代不断重叠。
    
{{see also|Competitive Lotka–Volterra equations}}
 
{{see also|Competitive Lotka–Volterra equations}}
第181行: 第127行:       −
===Prey===
+
=== Prey 猎物 ===
    
When multiplied out, the prey equation becomes
 
When multiplied out, the prey equation becomes
第187行: 第133行:  
When multiplied out, the prey equation becomes
 
When multiplied out, the prey equation becomes
   −
当它们相乘时,食饵方程就变成了
+
当猎物数量成倍增趋势时,猎物方程变为:
 +
 
    
:<math>\frac{dx}{dt} = \alpha x - \beta x y.</math>
 
:<math>\frac{dx}{dt} = \alpha x - \beta x y.</math>
  −
<math>\frac{dx}{dt} = \alpha x - \beta x y.</math>
  −
  −
= alpha x-beta x y
  −
        第201行: 第143行:  
The prey are assumed to have an unlimited food supply and to reproduce exponentially, unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet, this is represented above by βxy. If either  or  is zero, then there can be no predation.
 
The prey are assumed to have an unlimited food supply and to reproduce exponentially, unless subject to predation; this exponential growth is represented in the equation above by the term αx. The rate of predation upon the prey is assumed to be proportional to the rate at which the predators and the prey meet, this is represented above by βxy. If either  or  is zero, then there can be no predation.
   −
被捕食的动物被假定有无限的食物供应并且以指数形式繁殖,除非被捕食; 这个指数增长在上面的方程中用术语 αx 来表示。捕食猎物的速率假定与捕食者和猎物相遇的速率成正比,这一点用 βxy 表示。如果其中一个或者等于零,那么就不存在捕食。
+
假定猎物具有无限的食物供应,除非受到捕食,否则可以成倍繁殖,那么其指数增长由上式中的''αx''来表示。假设掠食者的掠食率,与掠食者和猎物的相遇率成正比,则用上式中的''βxy''表示。注意如果{{mvar|x}}或{{mvar|y}}为零,则表示没有掠夺。
      第209行: 第151行:  
With these two terms the equation above can be interpreted as follows: the rate of change of the prey's population is given by its own growth rate minus the rate at which it is preyed upon.
 
With these two terms the equation above can be interpreted as follows: the rate of change of the prey's population is given by its own growth rate minus the rate at which it is preyed upon.
   −
有了这两个项,上面的公式可以解释为: 猎物种群的变化率是由它自己的增长率减去它被捕食的速率。
+
基于该两个术语,上面的等式可以解释为:猎物种群的变化率由其自身数量的增长率减去被捕食数量的增长率得出。
         −
===Predators===
+
=== Predators 捕食者===
    
The predator equation becomes
 
The predator equation becomes
第219行: 第161行:  
The predator equation becomes
 
The predator equation becomes
   −
捕食者方程变成了
+
捕食者方程可以表示为:
 +
 
    
:<math>\frac{dy}{dt} = \delta xy - \gamma y.</math>
 
:<math>\frac{dy}{dt} = \delta xy - \gamma y.</math>
  −
<math>\frac{dy}{dt} = \delta xy - \gamma y.</math>
  −
  −
= delta xy-gamma y
  −
        第233行: 第171行:  
In this equation,  represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used, as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). The term  represents the loss rate of the predators due to either natural death or emigration, it leads to an exponential decay in the absence of prey.
 
In this equation,  represents the growth of the predator population. (Note the similarity to the predation rate; however, a different constant is used, as the rate at which the predator population grows is not necessarily equal to the rate at which it consumes the prey). The term  represents the loss rate of the predators due to either natural death or emigration, it leads to an exponential decay in the absence of prey.
   −
在这个方程中,代表了捕食者种群的增长。(注意与捕食率的相似性; 但是,使用了一个不同的常数,因为捕食者种群增长的速度不一定等于它消耗猎物的速度)。这个术语代表捕食者的损失率,由于自然死亡或移民,它导致了一个没有猎物的指数衰减。
+
在此等式中,{{math|''δxy''}}代表捕食者种群的增长。(请注意此处与捕食率表达式虽然相似;但是使用了一个不同的常数,因为捕食者的生长速度不一定等于其消耗猎物的速度)。另外{{math|''γy''}}表示由于自然死亡或迁徙造成的捕食者数量减少率,它在没有猎物的情况下是指数衰减的。
      第241行: 第179行:  
Hence the equation expresses that the rate of change of the predator's population depends upon the rate at which it consumes prey, minus its intrinsic death rate.
 
Hence the equation expresses that the rate of change of the predator's population depends upon the rate at which it consumes prey, minus its intrinsic death rate.
   −
因此这个方程表达了捕食者种群数量的变化率取决于捕食的速率减去其固有的死亡率。
+
因此,该等式表示,捕食者种群的变化率取决于其捕杀猎物的速率减去其固有死亡(包括迁徙)率。
         −
==Solutions to the equations==
+
== Solutions to the equations 方程求解 ==
    
The equations have [[periodic function|periodic]] solutions and do not have a simple expression in terms of the usual [[trigonometric function]]s, although they are quite tractable.<ref>{{cite journal|last1=Steiner|first1=Antonio|last2=Gander|first2=Martin Jakob|year=1999|title=Parametrische Lösungen der Räuber-Beute-Gleichungen im Vergleich|journal=Il Volterriano|volume=7|issue=|pages=32–44|url=http://archive-ouverte.unige.ch/unige:6300/ATTACHMENT01}}</ref><ref>{{cite journal|last1=Evans|first1=C. M.|last2=Findley|first2=G. L.|title=A new transformation for the Lotka-Volterra problem|journal=Journal of Mathematical Chemistry|volume=25|issue=|pages=105–110|year=1999|doi=10.1023/A:1019172114300|s2cid=36980176}}</ref>
 
The equations have [[periodic function|periodic]] solutions and do not have a simple expression in terms of the usual [[trigonometric function]]s, although they are quite tractable.<ref>{{cite journal|last1=Steiner|first1=Antonio|last2=Gander|first2=Martin Jakob|year=1999|title=Parametrische Lösungen der Räuber-Beute-Gleichungen im Vergleich|journal=Il Volterriano|volume=7|issue=|pages=32–44|url=http://archive-ouverte.unige.ch/unige:6300/ATTACHMENT01}}</ref><ref>{{cite journal|last1=Evans|first1=C. M.|last2=Findley|first2=G. L.|title=A new transformation for the Lotka-Volterra problem|journal=Journal of Mathematical Chemistry|volume=25|issue=|pages=105–110|year=1999|doi=10.1023/A:1019172114300|s2cid=36980176}}</ref>
第251行: 第189行:  
The equations have periodic solutions and do not have a simple expression in terms of the usual trigonometric functions, although they are quite tractable.
 
The equations have periodic solutions and do not have a simple expression in terms of the usual trigonometric functions, although they are quite tractable.
   −
这些方程有周期解,并且没有用通常的三角函数表示的简单表达式,尽管它们很容易处理。
+
这些方程式具有周期解,但通常对于三角函数而言,虽然很容易处理,却并没有简单的表达式。
      第259行: 第197行:  
If none of the non-negative parameters  vanishes, three can be absorbed into the normalization of variables to leave only one parameter: since the first equation is homogeneous in , and the second one in , the parameters β/α and δ/γ are absorbable in the normalizations of  and  respectively, and  into the normalization of , so that only  remains arbitrary. It is the only parameter affecting the nature of the solutions.
 
If none of the non-negative parameters  vanishes, three can be absorbed into the normalization of variables to leave only one parameter: since the first equation is homogeneous in , and the second one in , the parameters β/α and δ/γ are absorbable in the normalizations of  and  respectively, and  into the normalization of , so that only  remains arbitrary. It is the only parameter affecting the nature of the solutions.
   −
如果所有非负参数都不消失,三个参数可以被吸收到变量的归一化中,只留下一个参数: 由于第一个方程是齐次方程,第二个方程是齐次方程,参数 β/α 和 δ/γ 分别在正规化和归一化中被吸收,因此只保留任意性。这是影响解的性质的唯一参数。
+
如果该方程组中所有非负参数{{math|''α'', ''β'', ''γ'', ''δ''}}均存在,则可以将其中三个变量进行归一化,仅留下一个参数:由于第一个方程在{{math|''x''}}中是齐次的,而第二个方程在{{math|''y''}}中是齐次的,因此参数''β''/''α'' ''δ''/''γ''分别在{{math|''y''}}和{{math|''x''}}中可以进行归一化处理,{{math|''γ''}}变成{{math|''t''}}的归一化,因此只有{{math|''α''/''γ''}}保持任意。并且它是影响解决方案性质的唯一参数。
      第267行: 第205行:  
A linearization of the equations yields a solution similar to simple harmonic motion with the population of predators trailing that of prey by 90° in the cycle.
 
A linearization of the equations yields a solution similar to simple harmonic motion with the population of predators trailing that of prey by 90° in the cycle.
   −
方程的线性化得到了一个类似于简谐运动的解决方案,在这个周期中捕食者的数量尾随猎物90 ° 。
+
方程的线性化类似于简谐运动的解,在周期中捕食者的数量比猎物的数量落后90°。
 +
 
    
[[Image:Lotka Volterra dynamics.svg|center]]
 
[[Image:Lotka Volterra dynamics.svg|center]]
961

个编辑

导航菜单