更改

跳到导航 跳到搜索
大小无更改 、 2021年1月20日 (三) 16:54
无编辑摘要
第41行: 第41行:  
Miller–Urey experiment Synthesis of small organic molecules in a mixture of simple gases that is placed in a thermal gradient by heating (left) and cooling (right) the mixture at the same time, a mixture that is also subject to electrical discharges
 
Miller–Urey experiment Synthesis of small organic molecules in a mixture of simple gases that is placed in a thermal gradient by heating (left) and cooling (right) the mixture at the same time, a mixture that is also subject to electrical discharges
   −
米勒-乌雷Miller–Urey实验 在简单气体混合物中合成小有机分子,将混合物置于热梯度中,同时加热(左)和冷却(右),这种混合物也会受到电的作用
+
米勒-尤里Miller–Urey实验 在简单气体混合物中合成小有机分子,将混合物置于热梯度中,同时加热(左)和冷却(右),这种混合物也会受到电的作用
    
The classic 1952 [[Miller–Urey experiment]] and similar research demonstrated that most amino acids, the chemical constituents of the [[protein]]s used in all living organisms, can be synthesized from [[inorganic compound]]s under conditions intended to replicate those of the [[History of Earth|early Earth]]. Scientists have proposed various external sources of energy that may have triggered these reactions, including [[lightning]] and [[radiation]]. Other approaches ("metabolism-first" hypotheses) focus on understanding how [[catalysis]] in chemical systems on the early Earth might have provided the [[Precursor (chemistry)|precursor molecules]] necessary for self-replication.<ref name="Ralser 2014">{{cite journal |last1= Keller |first1= Markus A. |last2= Turchyn |first2= Alexandra V. |last3= Ralser |first3= Markus |date= 25 March 2014 |title= Non‐enzymatic glycolysis and pentose phosphate pathway‐like reactions in a plausible Archean ocean |journal= [[Molecular Systems Biology]] |volume= 10 |issue= 725 |page= 725 |doi= 10.1002/msb.20145228 |pmc= 4023395 |pmid= 24771084}}</ref>
 
The classic 1952 [[Miller–Urey experiment]] and similar research demonstrated that most amino acids, the chemical constituents of the [[protein]]s used in all living organisms, can be synthesized from [[inorganic compound]]s under conditions intended to replicate those of the [[History of Earth|early Earth]]. Scientists have proposed various external sources of energy that may have triggered these reactions, including [[lightning]] and [[radiation]]. Other approaches ("metabolism-first" hypotheses) focus on understanding how [[catalysis]] in chemical systems on the early Earth might have provided the [[Precursor (chemistry)|precursor molecules]] necessary for self-replication.<ref name="Ralser 2014">{{cite journal |last1= Keller |first1= Markus A. |last2= Turchyn |first2= Alexandra V. |last3= Ralser |first3= Markus |date= 25 March 2014 |title= Non‐enzymatic glycolysis and pentose phosphate pathway‐like reactions in a plausible Archean ocean |journal= [[Molecular Systems Biology]] |volume= 10 |issue= 725 |page= 725 |doi= 10.1002/msb.20145228 |pmc= 4023395 |pmid= 24771084}}</ref>
113

个编辑

导航菜单