第151行: |
第151行: |
| | | |
| ==应用== | | ==应用== |
− | 蚁群算法已经被应用于许多组合优化问题,从<font color="#ff8000">二次分配 quadratic assignment</font>到<font color="#ff8000">蛋白质折叠 protein folding</font>或<font color="#ff8000">路径选择 routing vehicles</font>问题,以及许多派生方法已经被应用于实变量的动态问题、随机问题、多目标和并行方法。 | + | 蚁群算法已经被应用于许多组合优化问题,从'''<font color="#ff8000">二次分配 quadratic assignment</font>'''到'''<font color="#ff8000">蛋白质折叠 protein folding</font>'''或'''<font color="#ff8000">路径选择 routing vehicles</font>'''问题,以及许多派生方法已经被应用于实变量的动态问题、随机问题、多目标和并行方法。 |
| | | |
− | 它也被用来产生<font color="#ff8000">旅行商问题 travelling salesman problem</font>的近似最优解。当图形可能发生动态变化时,它们比<font color="#ff8000">模拟退火算法 simulated annealing</font>和<font color="#ff8000">遗传算法 genetic algorithm</font>具有优势;蚁群算法可以连续运行并实时适应变化。这是网络路由和城市交通系统中很感兴趣的内容。 | + | 它也被用来产生'''<font color="#ff8000">旅行商问题 travelling salesman problem</font>'''的近似最优解。当图形可能发生动态变化时,它们比'''<font color="#ff8000">模拟退火算法 simulated annealing</font>'''和'''<font color="#ff8000">遗传算法 genetic algorithm</font>'''具有优势;蚁群算法可以连续运行并实时适应变化。这是网络路由和城市交通系统中很感兴趣的内容。 |
| | | |
| [[File:Knapsack ants.svg|thumb|背包问题: 相对于数量更多但营养更少的糖,蚂蚁更喜欢小滴的蜂蜜]] | | [[File:Knapsack ants.svg|thumb|背包问题: 相对于数量更多但营养更少的糖,蚂蚁更喜欢小滴的蜂蜜]] |
第162行: |
第162行: |
| | | |
| :2.较远的城市被选中的机会较少(可见度); | | :2.较远的城市被选中的机会较少(可见度); |
− |
| |
| | | |
| :3.在两个城市之间的边上留下的信息素轨迹越强烈,这条边被选择的概率就越大; | | :3.在两个城市之间的边上留下的信息素轨迹越强烈,这条边被选择的概率就越大; |
第252行: |
第251行: |
| | | |
| ===图像处理 Image processing=== | | ===图像处理 Image processing=== |
| + | 在图像处理中,蚁群算法可以用于进行边缘检测与与边缘连接。<ref>S. Meshoul and M Batouche, "[https://pdfs.semanticscholar.org/bdd2/61ab1f5a0c90009c6d84dbe4121a87dd4d31.pdf Ant colony system with extremal dynamics for point matching and pose estimation]," Proceedings of the 16th International Conference on Pattern Recognition, vol.3, pp.823-826, 2002.</ref><ref>H. Nezamabadi-pour, S. Saryazdi, and E. Rashedi, "[https://www.researchgate.net/profile/Esmat_Rashedi/publication/220176122_Edge_detection_using_ant_algorithms/links/5743d1ab08ae9ace841b4063.pdf Edge detection using ant algorithms]", Soft Computing, vol. 10, no.7, pp. 623-628, 2006.</ref> |
| | | |
− | 在图像处理中,蚁群算法可以用于进行边缘检测与与边缘连接。<ref>S. Meshoul and M Batouche, "[https://pdfs.semanticscholar.org/bdd2/61ab1f5a0c90009c6d84dbe4121a87dd4d31.pdf Ant colony system with extremal dynamics for point matching and pose estimation]," Proceedings of the 16th International Conference on Pattern Recognition, vol.3, pp.823-826, 2002.</ref><ref>H. Nezamabadi-pour, S. Saryazdi, and E. Rashedi, "[https://www.researchgate.net/profile/Esmat_Rashedi/publication/220176122_Edge_detection_using_ant_algorithms/links/5743d1ab08ae9ace841b4063.pdf Edge detection using ant algorithms]", Soft Computing, vol. 10, no.7, pp. 623-628, 2006.</ref>
| |
| | | |
| * '''边缘检测 Edge detection:''' | | * '''边缘检测 Edge detection:''' |
第271行: |
第270行: |
| | | |
| 像素(i,j)的局部统计数据。 | | 像素(i,j)的局部统计数据。 |
| + | |
| | | |
| :<math>\eta_{(i,j)}= \tfrac{1}{Z}*Vc*I_{(i,j)}</math> | | :<math>\eta_{(i,j)}= \tfrac{1}{Z}*Vc*I_{(i,j)}</math> |
第290行: |
第290行: |
| | | |
| | | |
− | :<math>f(x) = \lambda x, \quad \text{for x ≥ 0; (1)} </math><br />
| + | :<math>f(x) = \lambda x, \quad \text{for x ≥ 0; (1)} </math><br /> |
− | :<math>f(x) = \lambda x^2, \quad \text{for x ≥ 0; (2)}</math><br />
| + | :<math>f(x) = \lambda x^2, \quad \text{for x ≥ 0; (2)}</math><br /> |
− | :<math>f(x) =\begin{cases}
| + | :<math>f(x) =\begin{cases} |
| \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (3)} \\ | | \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (3)} \\ |
| 0, & \text{else} | | 0, & \text{else} |
| \end{cases}</math><br /> | | \end{cases}</math><br /> |
− | :<math>f(x) =\begin{cases}\pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (4)} \\
| + | :<math>f(x) =\begin{cases}\pi x \sin(\frac{\pi x}{2 \lambda}), & \text{for 0 ≤ x ≤} \lambda \text{; (4)} \\ |
| 0, & \text{else}\end{cases}</math> | | 0, & \text{else}\end{cases}</math> |
| | | |
第338行: |
第338行: |
| | | |
| ===其他应用 Other applications === | | ===其他应用 Other applications === |
− |
| |
− |
| |
| | | |
| * [[破产预测 Bankruptcy prediction]]<ref>{{cite journal|last1=Zhang|first1=Y.|title=A Rule-Based Model for Bankruptcy Prediction Based on an Improved Genetic Ant Colony Algorithm|journal=Mathematical Problems in Engineering|date=2013|volume=2013|page=753251|doi=10.1155/2013/753251|doi-access=free}}</ref> | | * [[破产预测 Bankruptcy prediction]]<ref>{{cite journal|last1=Zhang|first1=Y.|title=A Rule-Based Model for Bankruptcy Prediction Based on an Improved Genetic Ant Colony Algorithm|journal=Mathematical Problems in Engineering|date=2013|volume=2013|page=753251|doi=10.1155/2013/753251|doi-access=free}}</ref> |
第383行: |
第381行: |
| | | |
| 发明者是 Frans Moyson 和 Bernard Manderick。这一领域的先驱包括 Marco Dorigo, Luca Maria Gambardell。 | | 发明者是 Frans Moyson 和 Bernard Manderick。这一领域的先驱包括 Marco Dorigo, Luca Maria Gambardell。 |
| + | |
| | | |
| * 系统辨识 System identification<ref>L. Wang and Q. D. Wu, "Linear system parameters identification based on ant system algorithm," Proceedings of the IEEE Conference on Control Applications, pp. 401-406, 2001.</ref><ref>K. C. Abbaspour, R. Schulin, M. T. Van Genuchten, "[https://www.ars.usda.gov/arsuserfiles/20360500/pdf_pubs/P1797.pdf Estimating unsaturated soil hydraulic parameters using ant colony optimization]," Advances In Water Resources, vol. 24, no. 8, pp. 827-841, 2001.</ref> | | * 系统辨识 System identification<ref>L. Wang and Q. D. Wu, "Linear system parameters identification based on ant system algorithm," Proceedings of the IEEE Conference on Control Applications, pp. 401-406, 2001.</ref><ref>K. C. Abbaspour, R. Schulin, M. T. Van Genuchten, "[https://www.ars.usda.gov/arsuserfiles/20360500/pdf_pubs/P1797.pdf Estimating unsaturated soil hydraulic parameters using ant colony optimization]," Advances In Water Resources, vol. 24, no. 8, pp. 827-841, 2001.</ref> |
− | | + | <br> |
| | | |
| ==定义困难 Definition difficulty== | | ==定义困难 Definition difficulty== |