更改

跳到导航 跳到搜索
添加595字节 、 2021年6月13日 (日) 21:57
第1行: 第1行:    −
在统计学中,中介模型试图通过引入第三个假设变量,即中介变量(也称为中介变量、中介变量或中介变量),来识别和解释自变量与因变量之间观察到的关系的基础机制或过程。与自变量和因变量之间的直接因果关系不同,中介模型所描绘的图景是自变量通过影响中介变量(不可观测)进而影响因变量。因此,中介变量的作用是澄清自变量和因变量之间关系的本质<ref>MacKinnon, D. P. (2008). ''Introduction to Statistical Mediation Analysis''. New York: Erlbaum.</ref><references />
+
在统计学中,中介模型试图通过引入第三个假设变量,即中介变量(也称为中介变量、中介变量或中介变量),来识别和解释自变量与因变量之间观察到的关系的基础机制或过程。与自变量和因变量之间的直接因果关系不同,中介模型所描绘的图景是自变量通过影响中介变量(不可观测)进而影响因变量。因此,中介变量的作用是澄清自变量和因变量之间关系的本质。<ref>MacKinnon, D. P. (2008). ''Introduction to Statistical Mediation Analysis''. New York: Erlbaum.</ref><references group="MacKinnon, D. P. (2008). Introduction to Statistical Mediation Analysis. New York: Erlbaum." />
<references group="MacKinnon, D. P. (2008). Introduction to Statistical Mediation Analysis. New York: Erlbaum." />
  −
。Baron and Kenny(1986)提出的中介效应(mediation)框架(简称BK框架)在社会心理和消费者行为等诸多社会科学研究中产生了十分深远的影响。基于回归的分析的传统 BK 框架存在一些局限性。例如,Zhao et al.(2010)指出了BK框架存在的三点问题:第一,直接效应的缺失不应成为评价中介效应强度的标准;第二,寻找中介效应无需以X对Y存在显著的净效应为前提;第三,Sobel z检验的效力并不强,存在改进方式。近年来,基于现代因果模型的因果中介分析框架缓解了部分问题,成为了中介分析研究热点。
     −
== BK 框架下的中介效应分析==
+
 
 +
Baron and Kenny(1986)提出的中介效应(mediation)框架(简称BK框架)在社会心理和消费者行为等诸多社会科学研究中产生了十分深远的影响。
 +
 
 +
 
 +
基于回归的分析的传统 BK 框架存在一些局限性。例如,Zhao et al.(2010)指出了BK框架存在的三点问题:
 +
 
 +
* 第一,直接效应的缺失不应成为评价中介效应强度的标准;
 +
* 第二,寻找中介效应无需以X对Y存在显著的净效应为前提;
 +
* 第三,Sobel z检验的效力并不强,存在改进方式。
 +
 
 +
 
 +
近年来,基于现代因果模型的因果中介分析框架缓解了部分问题,成为了中介分析研究热点。
 +
 
 +
==BK 框架下的中介效应分析==
 
Baron and Kenny (1986) 提出了形成一个真正的中介关系必须满足的几个条件如下:
 
Baron and Kenny (1986) 提出了形成一个真正的中介关系必须满足的几个条件如下:
 +
 +
 
1)让因变量对自变量进行回归,以确认自变量是因变量的显著预测因子,即
 
1)让因变量对自变量进行回归,以确认自变量是因变量的显著预测因子,即
 
<math>Y=\beta _{{10}}+\beta _{{11}}X+\varepsilon _{1}</math>
 
<math>Y=\beta _{{10}}+\beta _{{11}}X+\varepsilon _{1}</math>
 
的回归系数<math>β_{11}</math> 是显著的。
 
的回归系数<math>β_{11}</math> 是显著的。
 +
 +
 
2)让中介变量对自变量进行回归,确认自变量是中介变量的显著预测因子,即
 
2)让中介变量对自变量进行回归,确认自变量是中介变量的显著预测因子,即
 
<math>Me=\beta _{{20}}+\beta _{{21}}X+\varepsilon _{2}</math>
 
<math>Me=\beta _{{20}}+\beta _{{21}}X+\varepsilon _{2}</math>
 
的回归系数 <math>\beta_{21}</math>是显著的。如果中介变量与自变量没有关联,那么它就不可能中介任何事物。
 
的回归系数 <math>\beta_{21}</math>是显著的。如果中介变量与自变量没有关联,那么它就不可能中介任何事物。
 +
 +
 
3)让因变量对中介和自变量同时进行回归,即
 
3)让因变量对中介和自变量同时进行回归,即
 
<math>Y=\beta _{{30}}+\beta _{{31}}X+\beta _{{32}}Me+\varepsilon _{3}</math>
 
<math>Y=\beta _{{30}}+\beta _{{31}}X+\beta _{{32}}Me+\varepsilon _{3}</math>
 
的回归系数 <math>\beta_{32}<math>是显著的,并且 <math>\beta_{31}</math>的绝对值应该小于自变量的效应 <math>\beta_{11}</math>。从而确保了中介变量是因变量的重要预测因子,并且使得相对于第一步,自变量对结果的解释性降低。
 
的回归系数 <math>\beta_{32}<math>是显著的,并且 <math>\beta_{31}</math>的绝对值应该小于自变量的效应 <math>\beta_{11}</math>。从而确保了中介变量是因变量的重要预测因子,并且使得相对于第一步,自变量对结果的解释性降低。
 +
    
中介变量可以解释两个变量之间观察到的全部或部分关系,如果中介变量的加入使自变量和因变量之间的相关性降为零,则中介的证据最大,也称为完全中介(full mediation)。而部分中介(partial mediation)是指不仅中介变量与因变量之间存在显著的关系,而且自变量与因变量之间也存在某种直接的关系。
 
中介变量可以解释两个变量之间观察到的全部或部分关系,如果中介变量的加入使自变量和因变量之间的相关性降为零,则中介的证据最大,也称为完全中介(full mediation)。而部分中介(partial mediation)是指不仅中介变量与因变量之间存在显著的关系,而且自变量与因变量之间也存在某种直接的关系。
 +
 +
    
我们采用Sobel’s test[10]来检验中介变量加入后自变量与因变量之间的关系是否显著降低,从而评估中介效应是否显著。然而,这种方式的统计效力(Power)很低。因此,为了有足够的效力检测显著性影响,需要大的样本量。这是因为Sobel检验的关键假设是正态性假设。因为Sobel检验是根据正态分布来评估给定样本的,所以样本规模小和抽样分布的偏态可能会有问题(详见正态分布)。因此,MacKinnon et al .,(2002)[12]所建议的经验法是,检测较小的效应需要1000个样本,检测中等效应需要100个样本,检测较大效应需要50个样本。基于自助法的检验能减少对样本量的依赖,见 Preacher and Hayes(2004)。
 
我们采用Sobel’s test[10]来检验中介变量加入后自变量与因变量之间的关系是否显著降低,从而评估中介效应是否显著。然而,这种方式的统计效力(Power)很低。因此,为了有足够的效力检测显著性影响,需要大的样本量。这是因为Sobel检验的关键假设是正态性假设。因为Sobel检验是根据正态分布来评估给定样本的,所以样本规模小和抽样分布的偏态可能会有问题(详见正态分布)。因此,MacKinnon et al .,(2002)[12]所建议的经验法是,检测较小的效应需要1000个样本,检测中等效应需要100个样本,检测较大效应需要50个样本。基于自助法的检验能减少对样本量的依赖,见 Preacher and Hayes(2004)。
    
==因果中介分析==
 
==因果中介分析==
=== 固定(fixing)与条件化(conditioning)===
+
===固定(fixing)与条件化(conditioning)===
    
中介分析量化了变量参与从原因到其结果的变化传递的程度。它本质上是一个因果概念,因此不能用统计术语来定义。然而,传统上,大量的中介分析是在线性回归的范畴内进行的。统计术语掩盖了所涉及关系的因果特征,这导致了一些困难、偏差(biases)和局限性(limitations)。而基于因果图(causal diagrams)和反事实逻辑的现代因果分析方法缓解了这些困难、偏见和限制。
 
中介分析量化了变量参与从原因到其结果的变化传递的程度。它本质上是一个因果概念,因此不能用统计术语来定义。然而,传统上,大量的中介分析是在线性回归的范畴内进行的。统计术语掩盖了所涉及关系的因果特征,这导致了一些困难、偏差(biases)和局限性(limitations)。而基于因果图(causal diagrams)和反事实逻辑的现代因果分析方法缓解了这些困难、偏见和限制。
第29行: 第49行:       −
因果方法的基本前提是,当我们试图估计自变量 X </math>对 因变量 Y </math>的直接影响时,并不总是适合对中介M进行“控制”(见上图)。对M进行“控制”的经典理论是,如果我们成功地阻止了M的变化,那么我们在Y中测量的任何变化都只能归因于X的变化,然后我们就有理由宣布观察到的效果是“X</math>对Y</math>的直接影响”。不幸的是,“控制M”并不能从物理上阻止M的改变;它只是把分析者的注意力集中在相等 M </math>值的情况下。而且,概率论的语言没有表示“阻止M改变”或“物理上保持M不变”的符号。唯一的运算是“以…为条件”(conditioning),这是当我们“控制” M </math>时所做的。或者为 Y</math> 的方程添加 M </math>作为其中的一个回归变量。 结果是,与在物理上保持 M </math>不变(例如 M = m )并将 X = 1</math> 下 Y</math> 的单位 与 X = 0 </math>下 Y </math>的单位进行比较的方法不同,我们允许 M 变化但忽略所有使得 M=m 的其他单位。这两个操作除了没有遗漏变量的情况,本质上是不同的,产生不同的结果[21][22]。
+
因果方法的基本前提是,当我们试图估计自变量 X <nowiki></math></nowiki>对 因变量 Y <nowiki></math></nowiki>的直接影响时,并不总是适合对中介M进行“控制”(见上图)。对M进行“控制”的经典理论是,如果我们成功地阻止了M的变化,那么我们在Y中测量的任何变化都只能归因于X的变化,然后我们就有理由宣布观察到的效果是“X<nowiki></math></nowiki>对Y<nowiki></math></nowiki>的直接影响”。不幸的是,“控制M”并不能从物理上阻止M的改变;它只是把分析者的注意力集中在相等 M <nowiki></math></nowiki>值的情况下。而且,概率论的语言没有表示“阻止M改变”或“物理上保持M不变”的符号。唯一的运算是“以…为条件”(conditioning),这是当我们“控制” M <nowiki></math></nowiki>时所做的。或者为 Y<nowiki></math></nowiki> 的方程添加 M <nowiki></math></nowiki>作为其中的一个回归变量。 结果是,与在物理上保持 M <nowiki></math></nowiki>不变(例如 M = m )并将 X = 1<nowiki></math></nowiki> 下 Y<nowiki></math></nowiki> 的单位 与 X = 0 <nowiki></math></nowiki>下 Y <nowiki></math></nowiki>的单位进行比较的方法不同,我们允许 M 变化但忽略所有使得 M=m 的其他单位。这两个操作除了没有遗漏变量的情况,本质上是不同的,产生不同的结果[21][22]。
   −
举例来说,假设 M </math>和 Y</math> 的误差项是相关的。在这种情况下,通过对 Y </math>在 X</math> 和 M </math>上进行回归,就无法对结构系数 B </math>和 A</math>(在M</math>和Y</math>之间,在Y</math>和X</math>之间) 进行估计。事实上,即使当 C</math> 等于 0 的时候,回归斜率也可能不等于 0 。这有两种后果。首先必须设计新的策略来估计结构系数 A</math>、B</math> 和 C</math>。其次,直接和间接效应的基本定义必须超越回归分析,并且应该采用类似于“固定 M</math>”的操作,而不是“在 M </math>的条件下”的操作。
+
举例来说,假设 M <nowiki></math></nowiki>和 Y<nowiki></math></nowiki> 的误差项是相关的。在这种情况下,通过对 Y <nowiki></math></nowiki>在 X<nowiki></math></nowiki> 和 M <nowiki></math></nowiki>上进行回归,就无法对结构系数 B <nowiki></math></nowiki>和 A<nowiki></math></nowiki>(在M<nowiki></math></nowiki>和Y<nowiki></math></nowiki>之间,在Y<nowiki></math></nowiki>和X<nowiki></math></nowiki>之间) 进行估计。事实上,即使当 C<nowiki></math></nowiki> 等于 0 的时候,回归斜率也可能不等于 0 。这有两种后果。首先必须设计新的策略来估计结构系数 A<nowiki></math></nowiki>、B<nowiki></math></nowiki> 和 C<nowiki></math></nowiki>。其次,直接和间接效应的基本定义必须超越回归分析,并且应该采用类似于“固定 M<nowiki></math></nowiki>”的操作,而不是“在 M <nowiki></math></nowiki>的条件下”的操作。
=== 数学定义 ===
+
===数学定义===
   −
Pearl(1994)[22]中定义了这样一个运算符 <math>do(M = m)</math>,它的作用是去除 M</math> 的方程,代之以一个常数 m</math>。例如,如果基本中介模型由以下方程组成:
+
Pearl(1994)[22]中定义了这样一个运算符 <math>do(M = m)</math>,它的作用是去除 M<nowiki></math></nowiki> 的方程,代之以一个常数 m<nowiki></math></nowiki>。例如,如果基本中介模型由以下方程组成:
 
<math> {\displaystyle X=f(\varepsilon _{1}),M=g(X,\varepsilon _{2}),Y=h(X,M,\varepsilon _{3}),}</math>
 
<math> {\displaystyle X=f(\varepsilon _{1}),M=g(X,\varepsilon _{2}),Y=h(X,M,\varepsilon _{3}),}</math>
 
那么应用了<math>do(M = m)<math>运算的模型将会变为:
 
那么应用了<math>do(M = m)<math>运算的模型将会变为:
第40行: 第60行:  
同时,应用了<math>do(X = x)<math> 运算的模型会变为:
 
同时,应用了<math>do(X = x)<math> 运算的模型会变为:
 
<math>{\displaystyle X=x,M=g(x,\varepsilon _{2}),Y=h(x,M,\varepsilon _{3})}</math>
 
<math>{\displaystyle X=x,M=g(x,\varepsilon _{2}),Y=h(x,M,\varepsilon _{3})}</math>
其中函数 f 和 g 以及误差项 ε1 </math>和 ε3 </math>的分布保持不变。如果我们进一步将 <math>do(X = x)</math>得到的变量 <math>M</math> 和 <math>Y</math> 分别重新命名为 <math>M(x)</math>和 <math>Y(x)</math> ,我们得到了所谓的“潜在结果(potential outcome)”[24]或“结构反事实(structural counterfactuals)”[25]这些新变量为定义直接和间接效应提供了便利的描述符号。具体来说,定义了从 <math>X = 0</math> 到 <math>X = 1</math>变化的四种效应:
+
其中函数 f 和 g 以及误差项 ε1 <nowiki></math></nowiki>和 ε3 <nowiki></math></nowiki>的分布保持不变。如果我们进一步将 <math>do(X = x)</math>得到的变量 <math>M</math> 和 <math>Y</math> 分别重新命名为 <math>M(x)</math>和 <math>Y(x)</math> ,我们得到了所谓的“潜在结果(potential outcome)”[24]或“结构反事实(structural counterfactuals)”[25]这些新变量为定义直接和间接效应提供了便利的描述符号。具体来说,定义了从 <math>X = 0</math> 到 <math>X = 1</math>变化的四种效应:
    
'''(a) 总体效应 –'''
 
'''(a) 总体效应 –'''
第61行: 第81行:  
其中 <math>NIE_r</math>表示在 <math>NIE</math> 的定义中进行 <math>X = 1<math> 到 <math>X = 0</math>的反向转换;线性系统中总体效应等于直接效应与间接效应之和,即负的反转间接效应等于间接效应 <math>-NIE_r = NIE</math>。这些定义的力量在于它们的普适性;它们适用于具有任意非线性相互作用,任意干扰之间的依赖关系,以及连续变量和离散变量的模型。
 
其中 <math>NIE_r</math>表示在 <math>NIE</math> 的定义中进行 <math>X = 1<math> 到 <math>X = 0</math>的反向转换;线性系统中总体效应等于直接效应与间接效应之和,即负的反转间接效应等于间接效应 <math>-NIE_r = NIE</math>。这些定义的力量在于它们的普适性;它们适用于具有任意非线性相互作用,任意干扰之间的依赖关系,以及连续变量和离散变量的模型。
   −
=== 中介效应公式 ===
+
===中介效应公式===
    
在线性分析中,所有的效应由结构系数的乘积决定,给出
 
在线性分析中,所有的效应由结构系数的乘积决定,给出
第69行: 第89行:  
后两个方程被称为中介公式[28][29][30],已成为许多中介研究的估计对象。他们给出了直接和间接效应的无分布假设(distribution-free)表达式,并证明,尽管误差分布和函数 f, g, h 的性质难以确定,中介效应仍然可以通过使用回归方法利用数据来估计。调节中介和中介调节的分析属于因果中介分析的特例。中介公式确定了各种相互作用系数如何贡献于中介的必要和充分成分。
 
后两个方程被称为中介公式[28][29][30],已成为许多中介研究的估计对象。他们给出了直接和间接效应的无分布假设(distribution-free)表达式,并证明,尽管误差分布和函数 f, g, h 的性质难以确定,中介效应仍然可以通过使用回归方法利用数据来估计。调节中介和中介调节的分析属于因果中介分析的特例。中介公式确定了各种相互作用系数如何贡献于中介的必要和充分成分。
   −
=== 简单案例 ===  
+
===简单案例===  
 
假设模型采用这种形式
 
假设模型采用这种形式
 
<math>{\displaystyle {\begin{aligned}X&=\varepsilon _{1}\\M&=b_{0}+b_{1}X+\varepsilon _{2}\\Y&=c_{0}+c_{1}X+c_{2}M+c_{3}XM+\varepsilon _{3}\end{aligned}}}</math>
 
<math>{\displaystyle {\begin{aligned}X&=\varepsilon _{1}\\M&=b_{0}+b_{1}X+\varepsilon _{2}\\Y&=c_{0}+c_{1}X+c_{2}M+c_{3}XM+\varepsilon _{3}\end{aligned}}}</math>
第83行: 第103行:       −
== 参考文献 ==
+
==参考文献==
 +
<references />

导航菜单