更改

跳到导航 跳到搜索
添加1,543字节 、 2021年6月13日 (日) 22:06
无编辑摘要
第3行: 第3行:       −
Baron and Kenny(1986)提出的中介效应(mediation)框架(简称BK框架)在社会心理和消费者行为等诸多社会科学研究中产生了十分深远的影响。
      +
Baron and Kenny(1986)<ref name=":0">Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986 Dec;51(6):1173-82. doi: 10.1037//0022-3514.51.6.1173. PMID: 3806354.</ref>提出的中介效应(mediation)框架(简称BK框架)在社会心理和消费者行为等诸多社会科学研究中产生了十分深远的影响。
   −
基于回归的分析的传统 BK 框架存在一些局限性。例如,Zhao et al.(2010)指出了BK框架存在的三点问题:
+
 
 +
基于回归的分析的传统 BK 框架存在一些局限性。例如,Zhao et al.(2010)<ref>Zhao X, Lynch Jr J G, Chen Q. Reconsidering Baron and Kenny: Myths and truths about mediation analysis[J]. Journal of consumer research, 2010, 37(2): 197-206.</ref>指出了BK框架存在的三点问题:
    
* 第一,直接效应的缺失不应成为评价中介效应强度的标准;
 
* 第一,直接效应的缺失不应成为评价中介效应强度的标准;
第16行: 第17行:     
==BK 框架下的中介效应分析==
 
==BK 框架下的中介效应分析==
Baron and Kenny (1986) 提出了形成一个真正的中介关系必须满足的几个条件如下:
+
Baron and Kenny (1986) <ref name=":0" />提出了形成一个真正的中介关系必须满足的几个条件如下:
      第38行: 第39行:       −
我们采用Sobel’s test[10]来检验中介变量加入后自变量与因变量之间的关系是否显著降低,从而评估中介效应是否显著。然而,这种方式的统计效力(Power)很低。因此,为了有足够的效力检测显著性影响,需要大的样本量。这是因为Sobel检验的关键假设是正态性假设。因为Sobel检验是根据正态分布来评估给定样本的,所以样本规模小和抽样分布的偏态可能会有问题(详见正态分布)。因此,MacKinnon et al .,(2002)[12]所建议的经验法是,检测较小的效应需要1000个样本,检测中等效应需要100个样本,检测较大效应需要50个样本。基于自助法的检验能减少对样本量的依赖,见 Preacher and Hayes(2004)。
+
我们采用Sobel’s test<ref>''Jump up to: '''a''''' '''''b''''' Sobel, M. E. (1982). "Asymptotic confidence intervals for indirect effects in structural equation models". ''Sociological Methodology''. '''13''': 290–312. ''doi'':''10.2307/270723''. ''JSTOR'' ''270723''.</ref>来检验中介变量加入后自变量与因变量之间的关系是否显著降低,从而评估中介效应是否显著。然而,这种方式的统计效力(Power)很低。因此,为了有足够的效力检测显著性影响,需要大的样本量。这是因为Sobel检验的关键假设是正态性假设。因为Sobel检验是根据正态分布来评估给定样本的,所以样本规模小和抽样分布的偏态可能会有问题(详见正态分布)。因此,MacKinnon et al .,(2002)<ref>MacKinnon, D. P.; Lockwood, C. M.; Lockwood, J. M.; West, S. G.; Sheets, V. (2002). ''"A comparison of methods to test mediation and other intervening variable effects"''. ''Psychological Methods''. '''7''' (1): 83–104. ''doi'':''10.1037/1082-989x.7.1.83''. ''PMC'' ''2819363''. ''PMID'' ''11928892''.</ref>所建议的经验法是,检测较小的效应需要1000个样本,检测中等效应需要100个样本,检测较大效应需要50个样本。基于自助法的检验能减少对样本量的依赖,见 Preacher and Hayes(2004)。
    
==因果中介分析==
 
==因果中介分析==
第49行: 第50行:       −
因果方法的基本前提是,当我们试图估计自变量 X <nowiki></math></nowiki>对 因变量 Y <nowiki></math></nowiki>的直接影响时,并不总是适合对中介M进行“控制”(见上图)。对M进行“控制”的经典理论是,如果我们成功地阻止了M的变化,那么我们在Y中测量的任何变化都只能归因于X的变化,然后我们就有理由宣布观察到的效果是“X<nowiki></math></nowiki>对Y<nowiki></math></nowiki>的直接影响”。不幸的是,“控制M”并不能从物理上阻止M的改变;它只是把分析者的注意力集中在相等 M <nowiki></math></nowiki>值的情况下。而且,概率论的语言没有表示“阻止M改变”或“物理上保持M不变”的符号。唯一的运算是“以…为条件”(conditioning),这是当我们“控制” M <nowiki></math></nowiki>时所做的。或者为 Y<nowiki></math></nowiki> 的方程添加 M <nowiki></math></nowiki>作为其中的一个回归变量。 结果是,与在物理上保持 M <nowiki></math></nowiki>不变(例如 M = m )并将 X = 1<nowiki></math></nowiki> 下 Y<nowiki></math></nowiki> 的单位 与 X = 0 <nowiki></math></nowiki>下 Y <nowiki></math></nowiki>的单位进行比较的方法不同,我们允许 M 变化但忽略所有使得 M=m 的其他单位。这两个操作除了没有遗漏变量的情况,本质上是不同的,产生不同的结果[21][22]。
+
因果方法的基本前提是,当我们试图估计自变量 <nowiki><math>X </nowiki><nowiki></math></nowiki>对 因变量 <nowiki><math>Y </nowiki><nowiki></math></nowiki>的直接影响时,并不总是适合对中介M进行“控制”(见上图)。对M进行“控制”的经典理论是,如果我们成功地阻止了M的变化,那么我们在Y中测量的任何变化都只能归因于X的变化,然后我们就有理由宣布观察到的效果是“X<nowiki></math></nowiki>对Y<nowiki></math></nowiki>的直接影响”。不幸的是,“控制M”并不能从物理上阻止M的改变;它只是把分析者的注意力集中在相等<nowiki><math> M </nowiki><nowiki></math></nowiki>值的情况下。而且,概率论的语言没有表示“阻止M改变”或“物理上保持M不变”的符号。唯一的运算是“以…为条件”(conditioning),这是当我们“控制” <nowiki><math>M </nowiki><nowiki></math></nowiki>时所做的。或者为 Y<nowiki></math></nowiki> 的方程添加 M <nowiki></math></nowiki>作为其中的一个回归变量。 结果是,与在物理上保持 M <nowiki></math></nowiki>不变(例如 M = m )并将 X = 1<nowiki></math></nowiki> 下 Y<nowiki></math></nowiki> 的单位 与<nowiki><math> X = 0 </nowiki><nowiki></math></nowiki>下<nowiki><math> Y </nowiki><nowiki></math></nowiki>的单位进行比较的方法不同,我们允许 M 变化但忽略所有使得 M=m 的其他单位。这两个操作除了没有遗漏变量的情况,本质上是不同的,产生不同的结果[21][22]。
   −
举例来说,假设 M <nowiki></math></nowiki>和 Y<nowiki></math></nowiki> 的误差项是相关的。在这种情况下,通过对 Y <nowiki></math></nowiki>在 X<nowiki></math></nowiki> 和 M <nowiki></math></nowiki>上进行回归,就无法对结构系数 B <nowiki></math></nowiki>和 A<nowiki></math></nowiki>(在M<nowiki></math></nowiki>和Y<nowiki></math></nowiki>之间,在Y<nowiki></math></nowiki>和X<nowiki></math></nowiki>之间) 进行估计。事实上,即使当 C<nowiki></math></nowiki> 等于 0 的时候,回归斜率也可能不等于 0 。这有两种后果。首先必须设计新的策略来估计结构系数 A<nowiki></math></nowiki>、B<nowiki></math></nowiki> 和 C<nowiki></math></nowiki>。其次,直接和间接效应的基本定义必须超越回归分析,并且应该采用类似于“固定 M<nowiki></math></nowiki>”的操作,而不是“在 M <nowiki></math></nowiki>的条件下”的操作。
+
举例来说,假设<nowiki><math> M </nowiki><nowiki></math></nowiki>和<nowiki><math> Y</nowiki><nowiki></math></nowiki> 的误差项是相关的。在这种情况下,通过对 <nowiki><math>Y </nowiki><nowiki></math></nowiki>在 <nowiki><math>X</nowiki><nowiki></math></nowiki> 和 <nowiki><math>M </nowiki><nowiki></math></nowiki>上进行回归,就无法对结构系数<nowiki><math> B </nowiki><nowiki></math></nowiki>和 <nowiki><math>A</nowiki><nowiki></math></nowiki>(在<nowiki><math>M</nowiki><nowiki></math></nowiki>和<nowiki><math>Y</nowiki><nowiki></math></nowiki>之间,在<nowiki><math>Y</nowiki><nowiki></math></nowiki>和<nowiki><math>X</nowiki><nowiki></math></nowiki>之间) 进行估计。事实上,即使当 <nowiki><math>C</nowiki><nowiki></math></nowiki> 等于 0 的时候,回归斜率也可能不等于 0 。这有两种后果。首先必须设计新的策略来估计结构系数 <nowiki><math>A</nowiki><nowiki></math></nowiki>、<nowiki><math>B</nowiki><nowiki></math></nowiki> 和 <nowiki><math>C</nowiki><nowiki></math></nowiki>。其次,直接和间接效应的基本定义必须超越回归分析,并且应该采用类似于“固定 <nowiki><math>M</nowiki><nowiki></math></nowiki>”的操作,而不是“在<nowiki><math> M </nowiki><nowiki></math></nowiki>的条件下”的操作。
 
===数学定义===
 
===数学定义===
  

导航菜单