更改

跳到导航 跳到搜索
增加混沌理论部分
第115行: 第115行:     
如果这个问题无法解决,那么对经典力学的任何其他重要贡献都将被认为能够获奖。虽然庞加莱没有解决最初的问题,但最终还是把奖颁给了他。其中一位评委,著名的卡尔·魏尔斯特拉斯说:“这项工作确实不能被视为提供了所提出问题的完整解决方案,但它的出版将开创天体力学史上的一个新纪元。”详细内容见格林的一篇文章。最终印刷的版本包含了许多导致混沌理论的重要思想。最初所述的问题最终由Karl F.Sundman在1912年解决了n = 3的情况,并在1990年代将其推广到王秋东的n > 3体的案例中。
 
如果这个问题无法解决,那么对经典力学的任何其他重要贡献都将被认为能够获奖。虽然庞加莱没有解决最初的问题,但最终还是把奖颁给了他。其中一位评委,著名的卡尔·魏尔斯特拉斯说:“这项工作确实不能被视为提供了所提出问题的完整解决方案,但它的出版将开创天体力学史上的一个新纪元。”详细内容见格林的一篇文章。最终印刷的版本包含了许多导致混沌理论的重要思想。最初所述的问题最终由Karl F.Sundman在1912年解决了n = 3的情况,并在1990年代将其推广到王秋东的n > 3体的案例中。
 +
 +
=== '''Chaos Theory 混沌理论''' ===
 +
混沌理论是个正在发展的数学理论,其可以被用来描述动力学领域的一系列现象。比如,在物理领域去考虑力是如何在作用在运动物体上的。
 +
 +
在拉普拉斯的工作下,太阳系的过去和未来是能够被计算的,而其计算精度取决于我们对系统初始情况的了解程度。在庞加莱研究n体运动的过程中,他发现了对初始情况敏感(sensitivity to initial conditions,指一个变量的微小改变可能导致后续系统的指数型变化)这一现象并指出了随机性和决定论在不可预测性下可能并行 (Poincaré 1899)。
 +
 +
一个我们没有注意到的微小变化可能会导致系统内我们无法预测的相当大的变化,这种作用在我们看来就是取决于可能性。如果我们精确地了解自然法则和宇宙的初始状态,我们可以精确地预测同一宇宙的后续状态。但是当自然法则被清晰地了解,我们可能对初始状态也只能近似地了解。如果对近似地了解允许我们去近似地预测后续状态,我们会称其是可预测的和被法则所规定的。但是庞加莱所发现的是,初始状态的微小改变可能会导致最终现象的巨大改变。前面很小的错误可能会导致后续预测的巨大错误。预测此时是不可能的,并且我们称呼其是随机现象。
 +
 +
这就是混沌理论的诞生。<ref>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202497/</ref>
    
===Work on relativity 相对论部分的工作===
 
===Work on relativity 相对论部分的工作===
39

个编辑

导航菜单