第118行: |
第118行: |
| | | |
| | | |
− | 1905年,庞加莱写信给洛伦兹,谈到洛伦兹1904年的论文,这篇论文被庞加莱称为“最重要的论文”。在这封信中,他指出了洛伦兹在将其变换应用于麦克斯韦方程组(电荷占据空间)时犯下的一个错误,并对洛伦兹给出的时间膨胀因子提出了质疑。<ref name="univ-nantes"> | + | 1905年,庞加莱写信给洛伦兹,谈到洛伦兹1904年的论文,这篇论文被庞加莱称为“最重要的论文”。在这封信中,他指出了洛伦兹在将其变换应用于麦克斯韦方程组(电荷占据空间)时犯下的一个错误,并对洛伦兹给出的时间膨胀因子提出了质疑。<ref name="univ-nantes"/> |
| 并证明了任意函数<math>\ell\left(\varepsilon\right)</math>对于所有<math>\varepsilon</math>必须是统一的(Lorentz通过一个不同的参数设置<math>\ell = 1</math>),以使变换形成一个组。在1906年发表的论文的放大版中,庞加莱指出组合<math>x^2+ y^2+ z^2- c^2t^2</math>是不变的。他通过引入<math>ct\sqrt{-1}</math>作为第四个虚坐标,指出Lorentz变换仅仅是四维空间中绕原点的旋转,他使用了四个向量的早期形式。庞加莱在1907年表示对他的新力学的四维重新表述不感兴趣,因为在他看来,将物理学翻译成四维几何的语言需要付出太多的努力才能获得有限的益处。1907年,由赫尔曼·明科夫斯基 Hermann Minkowski得出了这个概念的后果。<ref>{{Citation | author=Poincaré, H. | year=2007 | editor=Walter, S. A. | contribution= 38.3, Poincaré to H. A. Lorentz, May 1905 | title=La correspondance entre Henri Poincaré et les physiciens, chimistes, et ingénieurs |pages=255–257 |place=Basel | publisher=Birkhäuser|contribution-url=http://henripoincarepapers.univ-nantes.fr/chp/text/lorentz3.html}}</ref> | | 并证明了任意函数<math>\ell\left(\varepsilon\right)</math>对于所有<math>\varepsilon</math>必须是统一的(Lorentz通过一个不同的参数设置<math>\ell = 1</math>),以使变换形成一个组。在1906年发表的论文的放大版中,庞加莱指出组合<math>x^2+ y^2+ z^2- c^2t^2</math>是不变的。他通过引入<math>ct\sqrt{-1}</math>作为第四个虚坐标,指出Lorentz变换仅仅是四维空间中绕原点的旋转,他使用了四个向量的早期形式。庞加莱在1907年表示对他的新力学的四维重新表述不感兴趣,因为在他看来,将物理学翻译成四维几何的语言需要付出太多的努力才能获得有限的益处。1907年,由赫尔曼·明科夫斯基 Hermann Minkowski得出了这个概念的后果。<ref>{{Citation | author=Poincaré, H. | year=2007 | editor=Walter, S. A. | contribution= 38.3, Poincaré to H. A. Lorentz, May 1905 | title=La correspondance entre Henri Poincaré et les physiciens, chimistes, et ingénieurs |pages=255–257 |place=Basel | publisher=Birkhäuser|contribution-url=http://henripoincarepapers.univ-nantes.fr/chp/text/lorentz3.html}}</ref> |
| | | |
第125行: |
第125行: |
| | | |
| <blockquote>洛伦兹建立的基本点是,电磁场的方程不会因某种形式的变换(我称之为洛伦兹)而改变: | | <blockquote>洛伦兹建立的基本点是,电磁场的方程不会因某种形式的变换(我称之为洛伦兹)而改变: |
− |
| |
| | | |
| ::<math>x^\prime = k\ell\left(x + \varepsilon t\right)\!,\;t^\prime = k\ell\left(t + \varepsilon x\right)\!,\;y^\prime = \ell y,\;z^\prime = \ell z,\;k = 1/\sqrt{1-\varepsilon^2}.</math> | | ::<math>x^\prime = k\ell\left(x + \varepsilon t\right)\!,\;t^\prime = k\ell\left(t + \varepsilon x\right)\!,\;y^\prime = \ell y,\;z^\prime = \ell z,\;k = 1/\sqrt{1-\varepsilon^2}.</math> |
第133行: |
第132行: |
| | | |
| 他还讨论了另外两个无法解释的效应: (1)洛伦兹变质量理论<math>\gamma m</math>暗示的质量不守恒,亚伯拉罕变质量理论和考夫曼关于快速运动电子质量的实验,以及(2)居里夫人镭实验中的能量不守恒。并证明了任意函数<math>\ell\left(\varepsilon\right)</math>对于所有<math>\varepsilon</math>必须是统一的(Lorentz通过一个不同的参数设置<math>\ell=1</math>),以使变换形成一个组。在1906年发表的论文的放大版中,庞加莱指出组合<math>x^2+y^2+z^2-c^2t^2</math>是[[不变量(数学)|不变量]]。他指出,通过引入<math>ct\sqrt{-1}</math>作为第四个虚坐标,Lorentz变换仅仅是四维空间中绕原点的旋转,他使用了[[四向量]]的早期形式。<ref name="long">、{{Citation| author=Poincaré, H. | year=1906 | title=Sur la dynamique de l'électron (On the Dynamics of the Electron) | journal=Rendiconti del Circolo Matematico Rendiconti del Circolo di Palermo | volume =21 | pages =129–176}}</ref> | | 他还讨论了另外两个无法解释的效应: (1)洛伦兹变质量理论<math>\gamma m</math>暗示的质量不守恒,亚伯拉罕变质量理论和考夫曼关于快速运动电子质量的实验,以及(2)居里夫人镭实验中的能量不守恒。并证明了任意函数<math>\ell\left(\varepsilon\right)</math>对于所有<math>\varepsilon</math>必须是统一的(Lorentz通过一个不同的参数设置<math>\ell=1</math>),以使变换形成一个组。在1906年发表的论文的放大版中,庞加莱指出组合<math>x^2+y^2+z^2-c^2t^2</math>是[[不变量(数学)|不变量]]。他指出,通过引入<math>ct\sqrt{-1}</math>作为第四个虚坐标,Lorentz变换仅仅是四维空间中绕原点的旋转,他使用了[[四向量]]的早期形式。<ref name="long">、{{Citation| author=Poincaré, H. | year=1906 | title=Sur la dynamique de l'électron (On the Dynamics of the Electron) | journal=Rendiconti del Circolo Matematico Rendiconti del Circolo di Palermo | volume =21 | pages =129–176}}</ref> |
| + | |
| | | |
| 阿尔伯特·爱因斯坦 Albert Einstein的质能等效 mass-energy equivalence概念解决了<font color="#ff8000"> 庞加莱悖论</font>,而没有使用以太中的任何补偿机制。<font color="#ff8000"> 赫兹振子 Hertzian oscillato</font>在发射过程中失去了质量,动量在任何一个框架中都是守恒的。然而,关于庞加莱的重心问题的解决方案,爱因斯坦指出,庞加莱的公式和他自己1906年的公式在数学上是等价的。 | | 阿尔伯特·爱因斯坦 Albert Einstein的质能等效 mass-energy equivalence概念解决了<font color="#ff8000"> 庞加莱悖论</font>,而没有使用以太中的任何补偿机制。<font color="#ff8000"> 赫兹振子 Hertzian oscillato</font>在发射过程中失去了质量,动量在任何一个框架中都是守恒的。然而,关于庞加莱的重心问题的解决方案,爱因斯坦指出,庞加莱的公式和他自己1906年的公式在数学上是等价的。 |