更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
库尔特·哥德尔 Kurt Gödel
(查看源代码)
2021年7月11日 (日) 23:00的版本
删除859字节
、
2021年7月11日 (日) 23:00
→在维也纳的学习
第76行:
第76行:
这个问题成为了哥德尔博士论文的主题。1929年,23岁的他在Hans Hahn 的指导下完成了他的博士论文。在其中,他建立了关于一阶谓词演算的同名完备性定理。他在1930年获得博士学位,他的论文(附带一些额外的工作)由维也纳科学院出版。
这个问题成为了哥德尔博士论文的主题。1929年,23岁的他在Hans Hahn 的指导下完成了他的博士论文。在其中,他建立了关于一阶谓词演算的同名完备性定理。他在1930年获得博士学位,他的论文(附带一些额外的工作)由维也纳科学院出版。
−
+
<
br
>
−
1930年,哥德尔参加了9月5日至7日在柯尼斯堡举行的第二届精确科学认识论会议。在这里,他发表了他的
<
font color="#ff8000"
>
不完备性定理</font>。<ref name="Stadler">{{cite book |last1=Stadler |first1=Friedrich |title=The Vienna Circle: Studies in the Origins, Development, and Influence of Logical Empiricism |date=2015 |publisher=Springer |isbn=9783319165615 |url=https://books.google.com/books?id=2rAlCQAAQBAJ&q=Erkenntnis+1930+Konigsberg&pg=PA161 |language=en}}</ref>在那篇文章中,他证明了任何强大到足以描述自然数算术的可计算公理系统(例如,Peano 公理或 Zermelo-Fraenkel 集合论与选择公理) :
−
−
−
If a (logical or axiomatic formal) system is consistent, it cannot be complete.
−
−
如果一个(逻辑或公理化的正式)系统是一致的,那么它就不能是完整的。
−
==职业生涯==
==职业生涯==
薄荷
7,129
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本