第223行: |
第223行: |
| *如果''np''是一个整数,那么它的均值,中位数和模相同且等于''np''。<ref>{{cite journal|last=Neumann|first=P.|year=1966|title=Über den Median der Binomial- and Poissonverteilung|journal=Wissenschaftliche Zeitschrift der Technischen Universität Dresden|volume=19|pages=29–33|language=German}}</ref><ref>Lord, Nick. (July 2010). "Binomial averages when the mean is an integer", [[The Mathematical Gazette]] 94, 331-332.</ref> | | *如果''np''是一个整数,那么它的均值,中位数和模相同且等于''np''。<ref>{{cite journal|last=Neumann|first=P.|year=1966|title=Über den Median der Binomial- and Poissonverteilung|journal=Wissenschaftliche Zeitschrift der Technischen Universität Dresden|volume=19|pages=29–33|language=German}}</ref><ref>Lord, Nick. (July 2010). "Binomial averages when the mean is an integer", [[The Mathematical Gazette]] 94, 331-332.</ref> |
| | | |
− | *任何中位数''m''都必须满足⌊''np''⌋ ≤ ''m'' ≤ ⌈''np''⌉。<ref name="KaasBuhrman">{{cite journal|first1=R.|last1=Kaas|first2=J.M.|last2=Buhrman|title=Mean, Median and Mode in Binomial Distributions|journal=Statistica Neerlandica|year=1980|volume=34|issue=1|pages=13–18|doi=10.1111/j.1467-9574.1980.tb00681.x}}</ref> | + | *任何中位数''m''都必须满足⌊''np''⌋ ≤ ''m'' ≤ ⌈''np''⌉。<ref name="KaasBuhrman">{{cite journal|first1=R.|last1=Kaas|first2=J.M.|last2=Buhrman|title=Mean, Median and Mode in Binomial Distributions|journal=Statistica Neerlandica|year=1980|volume=34|issue=1|pages=13–18|doi=10.1111/j.1467-9574.1980.tb00681.x}}</ref><br /> |
| | | |
| + | *中位数''m''不能离均值太远。{{nowrap||''m'' − ''np''| ≤ min{ ln 2, max{''p'', 1 − ''p''} }} |
| | | |
− | *中位数''m''不能离均值太远。{{nowrap||''m'' − ''np''| ≤ min{ ln 2, max{''p'', 1 − ''p''} }}}<ref name="Hamza">{{Cite journal
| + | [math]\displaystyle{ <nowiki>F(k;n,p) \geq \frac{1}{\sqrt{8n\tfrac{k}{n}(1-\tfrac{k}{n})}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right),</nowiki>}[\math] |
− | | |
− | | last1 = Hamza | first1 = K.
| |
− | | |
− | | doi = 10.1016/0167-7152(94)00090-U
| |
− | | |
− | | title = The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions
| |
− | | |
− | F(k;n,p) \leq \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right)
| |
− | | |
− | | journal = Statistics & Probability Letters
| |
− | | |
− | | volume = 23
| |
− | | |
− | where D(a || p) is the relative entropy between an a-coin and a p-coin (i.e. between the Bernoulli(a) and Bernoulli(p) distribution):
| |
− | | |
− | 其中D(a || p)是参数为a和p的<font color="#ff8000">相对熵 relative entropy </font>,即Bernoulli(a)和Bernoulli(p)概率分布的差值:
| |
− | | |
− | | pages = 21–25
| |
− | | |
− | | year = 1995
| |
− | | |
− | D(a\parallel p)=(a)\log\frac{a}{p}+(1-a)\log\frac{1-a}{1-p}. \! | |
− | | |
− | | pmid =
| |
− | | |
− | | pmc =
| |
− | | |
− | Asymptotically, this bound is reasonably tight; see
| |
− | | |
− | 从渐近的角度来看,这个界限十分严格; 参见
| |
− | | |
− | }}</ref>
| |
− | | |
− | <nowiki>F(k;n,p) \geq \frac{1}{\sqrt{8n\tfrac{k}{n}(1-\tfrac{k}{n})}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right),</nowiki>
| |
| | | |
| *中位数是唯一的并且等于''m'' = [[Rounding|round]](''np''),此时|''m'' − ''np''| ≤ min{''p'', 1 − ''p''}(<math>''p'' = {{sfrac|1|2}}</math>和 ''n'' 是奇数的情况除外) | | *中位数是唯一的并且等于''m'' = [[Rounding|round]](''np''),此时|''m'' − ''np''| ≤ min{''p'', 1 − ''p''}(<math>''p'' = {{sfrac|1|2}}</math>和 ''n'' 是奇数的情况除外) |
第266行: |
第233行: |
| 这意味着更简单但更宽松的界限 | | 这意味着更简单但更宽松的界限 |
| | | |
− | <nowiki>F(k;n,p) \geq \frac1{\sqrt{2n}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right).</nowiki> | + | <nowiki>[math]\displaystyle{ F(k;n,p) \geq \frac1{\sqrt{2n}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right).}[\math]</nowiki> |
| | | |
| | | |