更改

跳到导航 跳到搜索
删除838字节 、 2021年8月8日 (日) 16:40
第223行: 第223行:  
*如果''np''是一个整数,那么它的均值,中位数和模相同且等于''np''。<ref>{{cite journal|last=Neumann|first=P.|year=1966|title=Über den Median der Binomial- and Poissonverteilung|journal=Wissenschaftliche Zeitschrift der Technischen Universität Dresden|volume=19|pages=29–33|language=German}}</ref><ref>Lord, Nick. (July 2010). "Binomial averages when the mean is an integer", [[The Mathematical Gazette]] 94, 331-332.</ref>
 
*如果''np''是一个整数,那么它的均值,中位数和模相同且等于''np''。<ref>{{cite journal|last=Neumann|first=P.|year=1966|title=Über den Median der Binomial- and Poissonverteilung|journal=Wissenschaftliche Zeitschrift der Technischen Universität Dresden|volume=19|pages=29–33|language=German}}</ref><ref>Lord, Nick. (July 2010). "Binomial averages when the mean is an integer", [[The Mathematical Gazette]] 94, 331-332.</ref>
   −
*任何中位数''m''都必须满足⌊''np''⌋&nbsp;≤&nbsp;''m''&nbsp;≤&nbsp;⌈''np''⌉。<ref name="KaasBuhrman">{{cite journal|first1=R.|last1=Kaas|first2=J.M.|last2=Buhrman|title=Mean, Median and Mode in Binomial Distributions|journal=Statistica Neerlandica|year=1980|volume=34|issue=1|pages=13–18|doi=10.1111/j.1467-9574.1980.tb00681.x}}</ref>
+
*任何中位数''m''都必须满足⌊''np''⌋&nbsp;≤&nbsp;''m''&nbsp;≤&nbsp;⌈''np''⌉。<ref name="KaasBuhrman">{{cite journal|first1=R.|last1=Kaas|first2=J.M.|last2=Buhrman|title=Mean, Median and Mode in Binomial Distributions|journal=Statistica Neerlandica|year=1980|volume=34|issue=1|pages=13–18|doi=10.1111/j.1467-9574.1980.tb00681.x}}</ref><br />
    +
*中位数''m''不能离均值太远。{{nowrap|&#124;''m'' − ''np''&#124; ≤ min{ ln 2, max{''p'', 1 − ''p''} }}
   −
*中位数''m''不能离均值太远。{{nowrap|&#124;''m'' − ''np''&#124; ≤ min{ ln 2, max{''p'', 1 − ''p''} }}}<ref name="Hamza">{{Cite journal
+
  [math]\displaystyle{ <nowiki>F(k;n,p) \geq \frac{1}{\sqrt{8n\tfrac{k}{n}(1-\tfrac{k}{n})}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right),</nowiki>}[\math]
 
  −
| last1 = Hamza | first1 = K.
  −
 
  −
| doi = 10.1016/0167-7152(94)00090-U
  −
 
  −
| title = The smallest uniform upper bound on the distance between the mean and the median of the binomial and Poisson distributions
  −
 
  −
F(k;n,p) \leq \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right) 
  −
 
  −
| journal = Statistics & Probability Letters
  −
 
  −
| volume = 23
  −
 
  −
where D(a || p) is the relative entropy between an a-coin and a p-coin (i.e. between the Bernoulli(a) and Bernoulli(p) distribution):
  −
 
  −
其中D(a || p)是参数为a和p的<font color="#ff8000">相对熵 relative entropy </font>,即Bernoulli(a)和Bernoulli(p)概率分布的差值:
  −
 
  −
| pages = 21–25
  −
 
  −
| year = 1995
  −
 
  −
  D(a\parallel p)=(a)\log\frac{a}{p}+(1-a)\log\frac{1-a}{1-p}. \!
  −
 
  −
| pmid = 
  −
 
  −
| pmc =
  −
 
  −
Asymptotically, this bound is reasonably tight; see
  −
 
  −
从渐近的角度来看,这个界限十分严格; 参见
  −
 
  −
}}</ref>
  −
 
  −
<nowiki>F(k;n,p) \geq \frac{1}{\sqrt{8n\tfrac{k}{n}(1-\tfrac{k}{n})}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right),</nowiki>
      
*中位数是唯一的并且等于''m''&nbsp;=&nbsp;[[Rounding|round]](''np''),此时|''m''&nbsp;−&nbsp;''np''|&nbsp;≤&nbsp;min{''p'',&nbsp;1&nbsp;−&nbsp;''p''}(<math>''p''&nbsp;=&nbsp;{{sfrac|1|2}}</math>和 ''n'' 是奇数的情况除外)
 
*中位数是唯一的并且等于''m''&nbsp;=&nbsp;[[Rounding|round]](''np''),此时|''m''&nbsp;−&nbsp;''np''|&nbsp;≤&nbsp;min{''p'',&nbsp;1&nbsp;−&nbsp;''p''}(<math>''p''&nbsp;=&nbsp;{{sfrac|1|2}}</math>和 ''n'' 是奇数的情况除外)
第266行: 第233行:  
这意味着更简单但更宽松的界限
 
这意味着更简单但更宽松的界限
   −
  <nowiki>F(k;n,p) \geq \frac1{\sqrt{2n}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right).</nowiki>
+
  <nowiki>[math]\displaystyle{ F(k;n,p) \geq \frac1{\sqrt{2n}} \exp\left(-nD\left(\frac{k}{n}\parallel p\right)\right).}[\math]</nowiki>
     
863

个编辑

导航菜单