Most extant complexity measures can be grouped into two main categories. Members of the first category (algorithmic information content and logical depth) all capture the randomness, information content or description length of a system or process, with random processes possessing the highest complexity since they most resist compression. The second category (including statistical complexity, physical complexity and neural complexity) conceptualizes complexity as distinct from randomness. Here, complex systems are those that possess a high amount of structure or information, often across multiple temporal and spatial scales. Within this category of measures, highly complex systems are positioned somewhere between systems that are highly ordered (regular) or highly disordered (random). <figref>Complexity_figure1.jpg</figref> shows a schematic diagram of the shape of such measures, however, it should be emphasized again that a generally accepted quantitative expression linking complexity and disorder does not currently exist. | Most extant complexity measures can be grouped into two main categories. Members of the first category (algorithmic information content and logical depth) all capture the randomness, information content or description length of a system or process, with random processes possessing the highest complexity since they most resist compression. The second category (including statistical complexity, physical complexity and neural complexity) conceptualizes complexity as distinct from randomness. Here, complex systems are those that possess a high amount of structure or information, often across multiple temporal and spatial scales. Within this category of measures, highly complex systems are positioned somewhere between systems that are highly ordered (regular) or highly disordered (random). <figref>Complexity_figure1.jpg</figref> shows a schematic diagram of the shape of such measures, however, it should be emphasized again that a generally accepted quantitative expression linking complexity and disorder does not currently exist. |