更改

跳到导航 跳到搜索
删除5,689字节 、 2021年8月8日 (日) 22:13
无编辑摘要
第3行: 第3行:  
|description=离散分布,阶乘和二项式主题,共轭先验分布,正态逼近,指数族分布
 
|description=离散分布,阶乘和二项式主题,共轭先验分布,正态逼近,指数族分布
 
}}
 
}}
{{Probability distribution
  −
  | name      = Binomial distribution
  −
  | type      = mass
  −
  | pdf_image  = [[File:Binomial distribution pmf.svg.png|300px|Probability mass function for the binomial distribution]]
  −
  | cdf_image  = [[File:Binomial distribution cdf.svg.png|300px|Cumulative distribution function for the binomial distribution]]
  −
  | notation  = <math>B(n,p)</math>
  −
  | parameters = <math>n \in \{0, 1, 2, \ldots\}</math> &ndash; number of trials<br /><math>p \in [0,1]</math> &ndash; success probability for each trial<br /><math>q = 1 - p</math>
  −
  | support    = <math>k \in \{0, 1, \ldots, n\}</math> &ndash; number of successes
  −
  | pdf        = <math>\binom{n}{k} p^k q^{n-k}</math>
  −
  | cdf        = <math>I_{q}(n - k, 1 + k)</math>
  −
  | mean      = <math>np</math>
  −
  | median    = <math>\lfloor np \rfloor</math> or <math>\lceil np \rceil</math>
  −
  | mode      = <math>\lfloor (n + 1)p \rfloor</math> or <math>\lceil (n + 1)p \rceil - 1</math>
  −
  | variance  = <math>npq</math>
  −
  | skewness  = <math>\frac{q-p}{\sqrt{npq}}</math>
  −
  | kurtosis  = <math>\frac{1-6pq}{npq}</math>
  −
  | entropy    = <math>\frac{1}{2} \log_2 (2\pi enpq) + O \left( \frac{1}{n} \right)</math><br /> in [[Shannon (unit)|shannons]]. For [[nat (unit)|nats]], use the natural log in the log.
  −
  | mgf        = <math>(q + pe^t)^n</math>
  −
  | char      = <math>(q + pe^{it})^n</math>
  −
  | pgf        = <math>G(z) = [q + pz]^n</math>
  −
  | fisher    = <math> g_n(p) = \frac{n}{pq} </math><br />(for fixed <math>n</math>)
  −
}}
  −
{{Probability fundamentals}}
  −
{{short description|Probability distribution}}
     −
{{Redirect|Binomial model|the binomial model in options pricing|Binomial options pricing model}}
+
{| class="wikitable" style="float:right; margin-left: 10px;"
 
+
|-
{{see also|Negative binomial distribution}}
+
| 参数
 
+
| <br /><math>n \in \{0, 1, 2, \ldots\}</math> &ndash; --- 试验次数; <br /><math>p \in [0,1]</math> &ndash; -- 每个试验的成功概率; <br /><math>q = 1 - p</math>
<!-- EDITORS! Please see [[Wikipedia:WikiProject Probability#Standards]] for a discussion of standards used for probability distribution articles such as this one.
+
|-
 
+
| 支持
<!-- EDITORS! Please see Wikipedia:WikiProject Probability#Standards for a discussion of standards used for probability distribution articles such as this one.
+
| <br /><math>k \in \{0, 1, \ldots, n\}</math> &ndash;  --- 成功的数量
 
+
|-
< ! – 本文编辑,参见讨论概率分布使用标准的文章[[Wikipedia: WikiProject Probability # standards]]。
+
|<font color="#ff8000">概率质量函数 </font>  
 
+
|<math>\binom{n}{k} p^k q^{n-k}</math>
-->
+
|-
 
+
| <font color="#ff8000">累积分布函数 </font>
-->
+
| <math>I_{q}(n - k, 1 + k)</math>
 
+
|-
-->
+
| <font color="#ff8000">平均值</font> =
 
+
| <math>np</math>
{{Probability distribution
+
|-
 
+
| <font color="#ff8000">中位数</font>  
{{Probability distribution
+
| <math>\lfloor np \rfloor</math> 或 <math>\lceil np \rceil</math>
 
+
|-
<font color="#ff8000">概率分布 Probability distribution </font>
+
| <font color="#ff8000">模</font>  
 
+
| <math>\lfloor (n + 1)p \rfloor</math> 或 <math>\lceil (n + 1)p \rceil - 1</math>
  | name      = Binomial distribution
+
|-
 
+
| <font color="#ff8000">方差</font>
  | name      = Binomial distribution
+
| <math>npq</math>
 
+
|-
名称 = <font color="#ff8000">二项分布 Binomial distribution </font>
+
| <font color="#ff8000">偏度</font>  
 
+
| <math>\frac{q-p}{\sqrt{npq}}</math>
  | type      = mass
+
|-
 
+
| <font color="#ff8000">峰度</font>  
  | type      = mass
+
| <math>\frac{1-6pq}{npq}</math>
 
+
|-
类型 = 质量,这里指<font color="#ff8000">离散型 discrete</font>
+
| <font color="#ff8000">熵</font>  
 
+
| <math>\frac{1}{2} \log_2 (2\pi enpq) + O \left( \frac{1}{n} \right)</math>
  | pdf_image  = [[File:Binomial distribution pmf.svg.png|300px|Probability mass function for the binomial distribution]]
+
|-
 
+
| <font color="#ff8000">矩量母函数</font>  
  | pdf_image  = Probability mass function for the binomial distribution
+
| <math>(q + pe^t)^n</math>
 
+
|-
| 概率质量函数图像 = '''<font color="#ff8000">二项分布的概率质量函数 Probability mass function for the binomial distribution </font>'''
+
| <font color="#ff8000">特征函数</font> =
 
+
| <math>(q + pe^{it})^n</math>
  | cdf_image  = [[File:Binomial distribution cdf.svg.png|300px|Cumulative distribution function for the binomial distribution]]
+
|-
 
+
| <font color="#ff8000">概率母函数</font>
  | cdf_image  = Cumulative distribution function for the binomial distribution
+
| <math>G(z) = [q + pz]^n</math>
 
+
|-
| 累积分布函数图像 =  '''<font color="#ff8000">二项分布的累积分布函数 Cumulative distribution function for the binomial distribution </font>'''
+
| <font color="#ff8000">费雪信息量</font>  
  | notation  = <math>B(n,p)</math>
+
| <math> g_n(p) = \frac{n}{pq} </math><br />(对于固定的 <math>n</math>)
 
+
|-
  | notation  = B(n,p)
+
|}
 
  −
| 符号 = <math>B(n,p)</math>
  −
 
  −
  | parameters = <math>n \in \{0, 1, 2, \ldots\}</math> &ndash; number of trials<br /><math>p \in [0,1]</math> &ndash; success probability for each trial<br /><math>q = 1 - p</math>
  −
 
  −
  | parameters = n \in \{0, 1, 2, \ldots\} &ndash; number of trials<br />p \in [0,1] &ndash; success probability for each trial<br />q = 1 - p
  −
 
  −
| 参数 = <br /><math>n \in \{0, 1, 2, \ldots\}</math> &ndash; --- 试验次数; <br /><math>p \in [0,1]</math> &ndash; -- 每个试验的成功概率; <br /><math>q = 1 - p</math>
  −
 
  −
  | support    = <math>k \in \{0, 1, \ldots, n\}</math> &ndash; number of successes
  −
 
  −
  | support    = k \in \{0, 1, \ldots, n\} &ndash; number of successes
  −
 
  −
| 支持 = <br /><math>k \in \{0, 1, \ldots, n\}</math> &ndash;  --- 成功的数量
  −
 
  −
  | pdf        = <math>\binom{n}{k} p^k q^{n-k}</math>
  −
 
  −
  | pdf        = \binom{n}{k} p^k q^{n-k}
  −
 
  −
|<font color="#ff8000">概率质量函数 Probability mass function </font> = <math>\binom{n}{k} p^k q^{n-k}</math>
  −
 
  −
  | cdf        = <math>I_{q}(n - k, 1 + k)</math>
  −
 
  −
  | cdf        = I_{q}(n - k, 1 + k)
  −
 
  −
| <font color="#ff8000">累积分布函数 Cumulative distribution function </font> = <math>I_{q}(n - k, 1 + k)</math>
  −
 
  −
  | mean      = <math>np</math>
  −
 
  −
  | mean      = np
  −
 
  −
<font color="#ff8000">平均值 mean</font> = <math>np</math>
  −
 
  −
  | median    = <math>\lfloor np \rfloor</math> or <math>\lceil np \rceil</math>
  −
 
  −
  | median    = \lfloor np \rfloor or \lceil np \rceil
  −
 
  −
<font color="#ff8000">中位数 median</font> = <math>\lfloor np \rfloor</math> 或 <math>\lceil np \rceil</math>
  −
 
  −
  | mode      = <math>\lfloor (n + 1)p \rfloor</math> or <math>\lceil (n + 1)p \rceil - 1</math>
  −
 
  −
  | mode      = \lfloor (n + 1)p \rfloor or \lceil (n + 1)p \rceil - 1
  −
 
  −
| <font color="#ff8000">模 mode</font> = <math>\lfloor (n + 1)p \rfloor</math> 或 <math>\lceil (n + 1)p \rceil - 1</math>
  −
 
  −
  | variance  = <math>npq</math>
  −
 
  −
  | variance  = npq
  −
 
  −
| <font color="#ff8000">方差 variance</font> = <math>npq</math>
  −
 
  −
  | skewness  = <math>\frac{q-p}{\sqrt{npq}}</math>
  −
 
  −
  | skewness  = \frac{q-p}{\sqrt{npq}}
  −
 
  −
| <font color="#ff8000">偏度 skewness</font> = <math>\frac{q-p}{\sqrt{npq}}</math>
  −
 
  −
  | kurtosis  = <math>\frac{1-6pq}{npq}</math>
  −
 
  −
  | kurtosis  = \frac{1-6pq}{npq}
  −
 
  −
| <font color="#ff8000">峰度 kurtosis</font> = <math>\frac{1-6pq}{npq}</math>
  −
 
  −
  | entropy    = <math>\frac{1}{2} \log_2 (2\pi enpq) + O \left( \frac{1}{n} \right)</math><br /> in [[Shannon (unit)|shannons]]. For [[nat (unit)|nats]], use the natural log in the log.
  −
 
  −
  | entropy    = \frac{1}{2} \log_2 (2\pi enpq) + O \left( \frac{1}{n} \right)<br /> in shannons. For nats, use the natural log in the log.
  −
 
  −
| <font color="#ff8000">熵 entropy</font> = <math>\frac{1}{2} \log_2 (2\pi enpq) + O \left( \frac{1}{n} \right)</math><font color="#ff8000">香农熵 Shannon entropy</font>测量。对于<font color="#ff8000">分布式消息队列系统 NATS </font>,使用日志中的自然日志。
  −
 
  −
  | mgf        = <math>(q + pe^t)^n</math>
  −
 
  −
  | mgf        = (q + pe^t)^n
  −
 
  −
| <font color="#ff8000">矩量母函数 Moment Generating Function</font> = <math>(q + pe^t)^n</math>
  −
 
  −
  | char      = <math>(q + pe^{it})^n</math>
  −
 
  −
  | char      = (q + pe^{it})^n
  −
 
  −
| <font color="#ff8000">特征函数 characteristic function</font> = <math>(q + pe^{it})^n</math>
  −
 
  −
  | pgf        = <math>G(z) = [q + pz]^n</math>
  −
 
  −
  | pgf        = G(z) = [q + pz]^n
  −
 
  −
| <font color="#ff8000">概率母函数 probability generating function</font> = <math>G(z) = [q + pz]^n</math>
  −
 
  −
  | fisher    = <math> g_n(p) = \frac{n}{pq} </math><br />(for fixed <math>n</math>)
  −
 
  −
  | fisher    =  g_n(p) = \frac{n}{pq} <br />(for fixed n)
  −
 
  −
| <font color="#ff8000">费雪信息量 fisher information</font> =  <math> g_n(p) = \frac{n}{pq} </math><br />(对于固定的 <math>n</math>)
  −
 
  −
}}
  −
 
  −
}}
      
[[File:Pascal's triangle; binomial distribution.svg.png|thumb|280px|Binomial distribution for <math>p=0.5</math><br />with ''n'' and ''k'' as in [[Pascal's triangle]]<br /><br />The probability that a ball in a [[Bean machine|Galton box]] with 8 layers (''n''&nbsp;=&nbsp;8) ends up in the central bin (''k''&nbsp;=&nbsp;4) is <math>70/256</math>.|链接=Special:FilePath/Pascal's_triangle;_binomial_distribution.svg.png]]
 
[[File:Pascal's triangle; binomial distribution.svg.png|thumb|280px|Binomial distribution for <math>p=0.5</math><br />with ''n'' and ''k'' as in [[Pascal's triangle]]<br /><br />The probability that a ball in a [[Bean machine|Galton box]] with 8 layers (''n''&nbsp;=&nbsp;8) ends up in the central bin (''k''&nbsp;=&nbsp;4) is <math>70/256</math>.|链接=Special:FilePath/Pascal's_triangle;_binomial_distribution.svg.png]]
863

个编辑

导航菜单