第192行: |
第192行: |
| The parameter ''Δ'' is known as the [[scaling dimension]] of the field, and its value depends on the theory under consideration. Scale invariance will typically hold provided that no fixed length scale appears in the theory. Conversely, the presence of a fixed length scale indicates that a theory is '''not''' scale-invariant. | | The parameter ''Δ'' is known as the [[scaling dimension]] of the field, and its value depends on the theory under consideration. Scale invariance will typically hold provided that no fixed length scale appears in the theory. Conversely, the presence of a fixed length scale indicates that a theory is '''not''' scale-invariant. |
| | | |
− | 参数 δ 称为场的'''Scaling Dimension 标度维数''',其大小取决于所考虑的理论。如果理论中没有固定长度的标度,标度不变性通常会成立。相反,如果存在固定的长度标度,则表明理论不具有标度不变性。 | + | 参数 {{mvar|Δ}} 称为场的'''Scaling Dimension 标度维数''',其大小取决于所考虑的理论。如果理论中没有固定长度的标度,标度不变性通常会成立。相反,如果存在固定的长度标度,则表明理论不具有标度不变性。 |
| | | |
| A consequence of scale invariance is that given a solution of a scale-invariant field equation, we can automatically find other solutions by rescaling both the coordinates and the fields appropriately. In technical terms, given a solution, ''φ''(''x''), one always has other solutions of the form | | A consequence of scale invariance is that given a solution of a scale-invariant field equation, we can automatically find other solutions by rescaling both the coordinates and the fields appropriately. In technical terms, given a solution, ''φ''(''x''), one always has other solutions of the form |
第210行: |
第210行: |
| where ''Δ'' is, again, the [[scaling dimension]] of the field. | | where ''Δ'' is, again, the [[scaling dimension]] of the field. |
| | | |
− | 其中 δ 是场的标度维数。 | + | 其中 {{mvar|Δ}} 是场的标度维数。 |
| | | |
| We note that this condition is rather restrictive. In general, solutions even of scale-invariant field equations will '''not''' be scale-invariant, and in such cases the symmetry is said to be [[spontaneously broken]]. | | We note that this condition is rather restrictive. In general, solutions even of scale-invariant field equations will '''not''' be scale-invariant, and in such cases the symmetry is said to be [[spontaneously broken]]. |
第289行: |
第289行: |
| where {{mvar|D}} is the combined number of spatial and time dimensions. | | where {{mvar|D}} is the combined number of spatial and time dimensions. |
| | | |
− | The field equations in the examples above are all linear in the fields, which has meant that the scaling dimension, , has not been so important. However, one usually requires that the scalar field action is dimensionless, and this fixes the scaling dimension of . In particular,
| + | 上面例子中的场方程在场中都是线性的,这意味着标度维数{{mvar|Δ}}并不是那么重要。然而,通常要求标量场的作用是无量纲的,这就固定了φ的标度维数。特别是: |
− | :\Delta=\frac{D-2}{2},
| |
− | where is the combined number of spatial and time dimensions.
| |
| | | |
− | 上面例子中的场方程在场中都是线性的,这意味着标度维数,,并没有那么重要。但是,通常需要标量场操作是无量纲的,这修正了。特别是: Delta = frac { D-2}{2} ,其中是空间维度和时间维度的组合数。
| + | <math>\Delta=\frac{D-2}{2},</math> |
| + | |
| + | 其中{{mvar|D}}是空间维数和时间维数的总和。 |
| | | |
| Given this scaling dimension for {{mvar|φ}}, there are certain nonlinear modifications of massless scalar field theory which are also scale-invariant. One example is massless [[Phi to the fourth|φ<sup>4</sup> theory]] for {{mvar|D}}=4. The field equation is | | Given this scaling dimension for {{mvar|φ}}, there are certain nonlinear modifications of massless scalar field theory which are also scale-invariant. One example is massless [[Phi to the fourth|φ<sup>4</sup> theory]] for {{mvar|D}}=4. The field equation is |
− | :<math>\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}-\nabla^2 \varphi+g\varphi^3=0.</math> | + | :<math>\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}-\nabla^2 \varphi+g\varphi^3=0.</math>。 |
| | | |
− | Given this scaling dimension for , there are certain nonlinear modifications of massless scalar field theory which are also scale-invariant. One example is massless φ<sup>4</sup> theory for =4. The field equation is
| + | 已知φ的标度维数,则无质量标量场理论的某些非线性修正也是标度不变的。例如,{{mvar|D}}=4的无质量'''φ<sup>4</sup>theory φ<sup>4</sup>理论'''。场方程是: |
− | :\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}-\nabla^2 \varphi+g\varphi^3=0.
| |
| | | |
− | 给定这个尺度维数,无质量纯量场理论的非线性修正也是尺度不变的。一个例子是 = 4的无质量 φ < sup > 4 理论。场方程是: frac {1}{ c ^ 2} frac { partial ^ 2 varphi }{ partial t ^ 2}-nabla ^ 2 varphi + g varphi ^ 3 = 0。
| + | <math>\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}-\nabla^2 \varphi+g\varphi^3=0.</math>。 |
| | | |
− | (Note that the name {{mvar|φ}}<sup>4</sup> derives from the form of the [[Phi to the fourth#The Lagrangian|Lagrangian]], which contains the fourth power of {{mvar|φ}}.) | + | (Note that the name {{mvar|φ}}<sup>4</sup> derives from the form of the [[Phi to the fourth#The Lagrangian|Lagrangian]], which contains the fourth power of {{mvar|φ}}. |
| | | |
− | (Note that the name 4 derives from the form of the Lagrangian, which contains the fourth power of .) | + | (注意,{{mvar|φ}}4的名称来自拉格朗日量的形式,它包含{{mvar|φ}}的四次幂) |
− | | |
− | (注意,名称4来源于拉格朗日函数的形式,它包含. 的四次方。)
| |
| | | |
| When {{mvar|D}}=4 (e.g. three spatial dimensions and one time dimension), the scalar field scaling dimension is {{mvar|Δ}}=1. The field equation is then invariant under the transformation | | When {{mvar|D}}=4 (e.g. three spatial dimensions and one time dimension), the scalar field scaling dimension is {{mvar|Δ}}=1. The field equation is then invariant under the transformation |
第314行: |
第311行: |
| :<math>\varphi (x)\rightarrow\lambda^{-1}\varphi(x).</math> | | :<math>\varphi (x)\rightarrow\lambda^{-1}\varphi(x).</math> |
| | | |
− | When =4 (e.g. three spatial dimensions and one time dimension), the scalar field scaling dimension is =1. The field equation is then invariant under the transformation
| + | 当{{mvar|D}}=4(如三维空间维数和一维时间维数)时,标量场标度维数为{{mvar|Δ}}=1。场方程在进行如下变换下是不变的: |
− | :x\rightarrow\lambda x,
| |
− | :t\rightarrow\lambda t,
| |
− | :\varphi (x)\rightarrow\lambda^{-1}\varphi(x).
| |
| | | |
− | 当 = 4时。3空间维和1时间维) ,标量场标度维为 = 1。字段方程在变换下是不变的: x right tarrow lambda x,: t right tarrow lambda t,: varphi (x) right tarrow lambda ^ {-1} varphi (x)。
| + | :<math>x\rightarrow\lambda x,</math> |
| + | :<math>t\rightarrow\lambda t,</math> |
| + | :<math>\varphi (x)\rightarrow\lambda^{-1}\varphi(x).</math> |
| | | |
| The key point is that the parameter {{mvar|g}} must be dimensionless, otherwise one introduces a fixed length scale into the theory: For {{mvar|φ}}<sup>4</sup> theory, this is only the case in {{mvar|D}}=4. | | The key point is that the parameter {{mvar|g}} must be dimensionless, otherwise one introduces a fixed length scale into the theory: For {{mvar|φ}}<sup>4</sup> theory, this is only the case in {{mvar|D}}=4. |
| Note that under these transformations the argument of the function {{mvar|φ}} is unchanged. | | Note that under these transformations the argument of the function {{mvar|φ}} is unchanged. |
| | | |
− | The key point is that the parameter must be dimensionless, otherwise one introduces a fixed length scale into the theory: For 4 theory, this is only the case in =4.
| + | 关键是参数{{mvar|g}}必须是无量纲的,否则就会引入一个固定的长度标度到理论中:对于{{mvar|φ}}<sup>4</sup>理论,只有在{{mvar|D}}=4时才会出现这种情况。注意,在这些变换下,函数{{mvar|φ}}的参数是不变的。 |
− | Note that under these transformations the argument of the function is unchanged.
| |
− | | |
− | 关键在于参数必须是无量纲的,否则就会在理论中引入一个固定长度的标度: 对于4理论,这只是 = 4的情况。注意,在这些转换下,函数的参数是不变的。
| |
| | | |
| ==Scale invariance in quantum field theory 量子场论中的标度不变性== | | ==Scale invariance in quantum field theory 量子场论中的标度不变性== |