更改

跳到导航 跳到搜索
删除1,023字节 、 2021年9月1日 (三) 14:46
第192行: 第192行:  
The parameter ''Δ'' is known as the [[scaling dimension]] of the field, and its value depends on the theory under consideration.  Scale invariance will typically hold provided that no fixed length scale appears in the theory. Conversely, the presence of a fixed length scale indicates that a theory is '''not''' scale-invariant.
 
The parameter ''Δ'' is known as the [[scaling dimension]] of the field, and its value depends on the theory under consideration.  Scale invariance will typically hold provided that no fixed length scale appears in the theory. Conversely, the presence of a fixed length scale indicates that a theory is '''not''' scale-invariant.
   −
参数 δ 称为场的'''Scaling Dimension 标度维数''',其大小取决于所考虑的理论。如果理论中没有固定长度的标度,标度不变性通常会成立。相反,如果存在固定的长度标度,则表明理论不具有标度不变性。
+
参数 {{mvar|Δ}} 称为场的'''Scaling Dimension 标度维数''',其大小取决于所考虑的理论。如果理论中没有固定长度的标度,标度不变性通常会成立。相反,如果存在固定的长度标度,则表明理论不具有标度不变性。
    
A consequence of scale invariance is that given a solution of a scale-invariant field equation, we can automatically find other solutions by rescaling both the coordinates and the fields appropriately. In technical terms, given a solution,  ''φ''(''x''), one always has other solutions of the form
 
A consequence of scale invariance is that given a solution of a scale-invariant field equation, we can automatically find other solutions by rescaling both the coordinates and the fields appropriately. In technical terms, given a solution,  ''φ''(''x''), one always has other solutions of the form
第210行: 第210行:  
where ''Δ'' is, again, the [[scaling dimension]] of the field.
 
where ''Δ'' is, again, the [[scaling dimension]] of the field.
   −
其中 δ 是场的标度维数。
+
其中 {{mvar|Δ}} 是场的标度维数。
    
We note that this condition is rather restrictive. In general, solutions even of scale-invariant field equations will '''not''' be scale-invariant, and in such cases the symmetry is said to be [[spontaneously broken]].
 
We note that this condition is rather restrictive. In general, solutions even of scale-invariant field equations will '''not''' be scale-invariant, and in such cases the symmetry is said to be [[spontaneously broken]].
第289行: 第289行:  
where {{mvar|D}} is the combined number of spatial and time dimensions.
 
where {{mvar|D}} is the combined number of spatial and time dimensions.
   −
The field equations in the examples above are all linear in the fields, which has meant that the scaling dimension, , has not been so important. However, one usually requires that the scalar field action is dimensionless, and this fixes the scaling dimension of . In particular,
+
上面例子中的场方程在场中都是线性的,这意味着标度维数{{mvar|Δ}}并不是那么重要。然而,通常要求标量场的作用是无量纲的,这就固定了φ的标度维数。特别是:
:\Delta=\frac{D-2}{2},
  −
where  is the combined number of spatial and time dimensions.
     −
上面例子中的场方程在场中都是线性的,这意味着标度维数,,并没有那么重要。但是,通常需要标量场操作是无量纲的,这修正了。特别是: Delta = frac { D-2}{2} ,其中是空间维度和时间维度的组合数。
+
<math>\Delta=\frac{D-2}{2},</math>
 +
 
 +
其中{{mvar|D}}是空间维数和时间维数的总和。
    
Given this scaling dimension for {{mvar|φ}}, there are certain nonlinear modifications of massless scalar field theory which are also scale-invariant. One example is massless [[Phi to the fourth|φ<sup>4</sup> theory]] for {{mvar|D}}=4. The field equation is
 
Given this scaling dimension for {{mvar|φ}}, there are certain nonlinear modifications of massless scalar field theory which are also scale-invariant. One example is massless [[Phi to the fourth|φ<sup>4</sup> theory]] for {{mvar|D}}=4. The field equation is
:<math>\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}-\nabla^2 \varphi+g\varphi^3=0.</math>
+
:<math>\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}-\nabla^2 \varphi+g\varphi^3=0.</math>
   −
Given this scaling dimension for , there are certain nonlinear modifications of massless scalar field theory which are also scale-invariant. One example is massless φ<sup>4</sup> theory for =4. The field equation is
+
已知φ的标度维数,则无质量标量场理论的某些非线性修正也是标度不变的。例如,{{mvar|D}}=4的无质量'''φ<sup>4</sup>theory φ<sup>4</sup>理论'''。场方程是:
:\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}-\nabla^2 \varphi+g\varphi^3=0.
     −
给定这个尺度维数,无质量纯量场理论的非线性修正也是尺度不变的。一个例子是 = 4的无质量 φ < sup > 4  理论。场方程是: frac {1}{ c ^ 2} frac { partial ^ 2 varphi }{ partial t ^ 2}-nabla ^ 2 varphi + g varphi ^ 3 = 0。
+
<math>\frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}-\nabla^2 \varphi+g\varphi^3=0.</math>。
   −
(Note that the name {{mvar|φ}}<sup>4</sup> derives from the form of the [[Phi to the fourth#The Lagrangian|Lagrangian]], which contains the fourth power of {{mvar|φ}}.)
+
(Note that the name {{mvar|φ}}<sup>4</sup> derives from the form of the [[Phi to the fourth#The Lagrangian|Lagrangian]], which contains the fourth power of {{mvar|φ}}.
   −
(Note that the name 4 derives from the form of the Lagrangian, which contains the fourth power of .)
+
(注意,{{mvar|φ}}4的名称来自拉格朗日量的形式,它包含{{mvar|φ}}的四次幂)
 
  −
(注意,名称4来源于拉格朗日函数的形式,它包含. 的四次方。)
      
When {{mvar|D}}=4 (e.g. three spatial dimensions and one time dimension), the scalar field scaling dimension is {{mvar|Δ}}=1. The field equation is then invariant under the transformation
 
When {{mvar|D}}=4 (e.g. three spatial dimensions and one time dimension), the scalar field scaling dimension is {{mvar|Δ}}=1. The field equation is then invariant under the transformation
第314行: 第311行:  
:<math>\varphi (x)\rightarrow\lambda^{-1}\varphi(x).</math>
 
:<math>\varphi (x)\rightarrow\lambda^{-1}\varphi(x).</math>
   −
When =4 (e.g. three spatial dimensions and one time dimension), the scalar field scaling dimension is =1. The field equation is then invariant under the transformation
+
当{{mvar|D}}=4(如三维空间维数和一维时间维数)时,标量场标度维数为{{mvar|Δ}}=1。场方程在进行如下变换下是不变的:
:x\rightarrow\lambda x,
  −
:t\rightarrow\lambda t,
  −
:\varphi (x)\rightarrow\lambda^{-1}\varphi(x).
     −
当 = 4时。3空间维和1时间维) ,标量场标度维为 = 1。字段方程在变换下是不变的: x right tarrow lambda x,: t right tarrow lambda t,: varphi (x) right tarrow lambda ^ {-1} varphi (x)
+
:<math>x\rightarrow\lambda x,</math>
 +
:<math>t\rightarrow\lambda t,</math>
 +
:<math>\varphi (x)\rightarrow\lambda^{-1}\varphi(x).</math>
    
The key point is that the parameter {{mvar|g}} must be dimensionless, otherwise one introduces a fixed length scale into the theory: For  {{mvar|φ}}<sup>4</sup>  theory, this is only the case in {{mvar|D}}=4.
 
The key point is that the parameter {{mvar|g}} must be dimensionless, otherwise one introduces a fixed length scale into the theory: For  {{mvar|φ}}<sup>4</sup>  theory, this is only the case in {{mvar|D}}=4.
 
Note that under these transformations the argument of the function {{mvar|φ}} is unchanged.
 
Note that under these transformations the argument of the function {{mvar|φ}} is unchanged.
   −
The key point is that the parameter  must be dimensionless, otherwise one introduces a fixed length scale into the theory: For  4 theory, this is only the case in =4.
+
关键是参数{{mvar|g}}必须是无量纲的,否则就会引入一个固定的长度标度到理论中:对于{{mvar|φ}}<sup>4</sup>理论,只有在{{mvar|D}}=4时才会出现这种情况。注意,在这些变换下,函数{{mvar|φ}}的参数是不变的。
Note that under these transformations the argument of the function  is unchanged.
  −
 
  −
关键在于参数必须是无量纲的,否则就会在理论中引入一个固定长度的标度: 对于4理论,这只是 = 4的情况。注意,在这些转换下,函数的参数是不变的。
      
==Scale invariance in quantum field theory 量子场论中的标度不变性==
 
==Scale invariance in quantum field theory 量子场论中的标度不变性==
596

个编辑

导航菜单