第351行: |
第351行: |
| Even though the quantized massless ''φ''<sup>4</sup> is not scale-invariant, there do exist scale-invariant quantized scalar field theories other than the Gaussian fixed point. One example is the '''Wilson-Fisher fixed point''', below. | | Even though the quantized massless ''φ''<sup>4</sup> is not scale-invariant, there do exist scale-invariant quantized scalar field theories other than the Gaussian fixed point. One example is the '''Wilson-Fisher fixed point''', below. |
| | | |
− | 虽然量子化无质量''φ''<sup>4</sup>不是标度不变的,但除了高斯定点外,确实存在标度不变的量子化标量场理论。例如:'''Wilson-Fisher Fixed Point 威尔逊-费雪定点''' | + | 虽然量子化无质量''φ''<sup>4</sup>不是标度不变的,但除了高斯定点外,确实存在标度不变的量子化标量场理论。例如:'''Wilson-Fisher Fixed Point 威尔逊-费雪定点'''。 |
| | | |
| ===Conformal field theory 共形场论=== | | ===Conformal field theory 共形场论=== |
第382行: |
第382行: |
| :<math>G(r)\propto\frac{1}{r^{D-2+\eta}},</math> | | :<math>G(r)\propto\frac{1}{r^{D-2+\eta}},</math> |
| for some particular value of <math>\eta</math>, which is an example of a critical exponent. | | for some particular value of <math>\eta</math>, which is an example of a critical exponent. |
− |
| |
− | An example of the kind of physical quantities one would like to calculate at this critical temperature is the correlation between spins separated by a distance . This has the generic behaviour:
| |
− | :G(r)\propto\frac{1}{r^{D-2+\eta}},
| |
− | for some particular value of \eta, which is an example of a critical exponent.
| |
| | | |
| 在这个临界温度下,人们想要计算的物理量之一是存在距离的自旋之间的相互关系。此处通式为: | | 在这个临界温度下,人们想要计算的物理量之一是存在距离的自旋之间的相互关系。此处通式为: |
第393行: |
第389行: |
| 对于某个特定的<math>\eta</math>值,这是一个临界指数的例子。 | | 对于某个特定的<math>\eta</math>值,这是一个临界指数的例子。 |
| | | |
− | ====CFT description CFT描述==== | + | ====CFT description 共形场论描述==== |
| The fluctuations at temperature {{math|''T<sub>c</sub>''}} are scale-invariant, and so the Ising model at this phase transition is expected to be described by a scale-invariant statistical field theory. In fact, this theory is the '''Wilson-Fisher fixed point''', a particular scale-invariant [[scalar field (quantum field theory)|scalar field theory]]. | | The fluctuations at temperature {{math|''T<sub>c</sub>''}} are scale-invariant, and so the Ising model at this phase transition is expected to be described by a scale-invariant statistical field theory. In fact, this theory is the '''Wilson-Fisher fixed point''', a particular scale-invariant [[scalar field (quantum field theory)|scalar field theory]]. |
| | | |
− | The fluctuations at temperature are scale-invariant, and so the Ising model at this phase transition is expected to be described by a scale-invariant statistical field theory. In fact, this theory is the Wilson-Fisher fixed point, a particular scale-invariant scalar field theory.
| + | 在临界温度处的波动是标度不变的,因此相变时的伊辛模型可以用标度不变的统计场论来描述。事实上,这个理论就是威尔逊-费雪定点,一个特殊的标度不变标量场理论。 |
− | | |
− | 温度的波动是尺度不变的,因此相变时的伊辛模型可以用尺度不变的统计场理论来描述。事实上,这个理论就是 Wilson-Fisher 的定点,一个特殊的尺度不变纯量场理论。
| |
| | | |
| In this context, {{math|''G''(''r'')}} is understood as a [[correlation function]] of scalar fields, | | In this context, {{math|''G''(''r'')}} is understood as a [[correlation function]] of scalar fields, |
第404行: |
第398行: |
| Now we can fit together a number of the ideas seen already. | | Now we can fit together a number of the ideas seen already. |
| | | |
− | In this context, is understood as a correlation function of scalar fields,
| + | 此处,{{math|''G''(''r'')}}理解为标量场的相关函数, |
− | :\langle\phi(0)\phi(r)\rangle\propto\frac{1}{r^{D-2+\eta}}.
| + | |
− | Now we can fit together a number of the ideas seen already.
| + | <math>\langle\phi(0)\phi(r)\rangle\propto\frac{1}{r^{D-2+\eta}}.</math>。 |
| | | |
− | 在这个上下文中,被理解为标量场的相关函数(量子场论) ,: langle phi (0) phi (r) rangle to frac {1}{ r ^ { D-2 + eta }。现在我们可以把已经看到的一些想法组合在一起。
| + | 现在我们可以把已经看到的一些想法联系起来。 |
| | | |
| From the above, one sees that the critical exponent, {{mvar|η}}, for this phase transition, is also an '''anomalous dimension'''. This is because the classical dimension of the scalar field, | | From the above, one sees that the critical exponent, {{mvar|η}}, for this phase transition, is also an '''anomalous dimension'''. This is because the classical dimension of the scalar field, |
第416行: |
第410行: |
| where {{mvar|D}} is the number of dimensions of the Ising model lattice. | | where {{mvar|D}} is the number of dimensions of the Ising model lattice. |
| | | |
− | From the above, one sees that the critical exponent, , for this phase transition, is also an anomalous dimension. This is because the classical dimension of the scalar field,
| + | 由上可知,这种相变的临界指数也是异常维数。这是因为标量场的经典维数: |
− | :\Delta=\frac{D-2}{2}
| + | |
− | is modified to become
| + | <math>\Delta=\frac{D-2}{2}</math> |
− | :\Delta=\frac{D-2+\eta}{2},
| + | |
− | where is the number of dimensions of the Ising model lattice.
| + | 修正为: |
| + | |
| + | <math>\Delta=\frac{D-2+\eta}{2},</math> |
| | | |
− | 从上面,我们可以看到,对于这种相变,临界指数也是一个反常的维度。这是因为标量场的经典维数: Delta = frac { D-2}{2}被修改为: Delta = frac { D-2 + eta }{2} ,其中是 Ising 模型格子的维数。
| + | 其中{{mvar|D}} 是伊辛模型格子的维数。 |
| | | |
| So this '''anomalous dimension''' in the conformal field theory is the ''same'' as a particular critical exponent of the Ising model phase transition. | | So this '''anomalous dimension''' in the conformal field theory is the ''same'' as a particular critical exponent of the Ising model phase transition. |
第428行: |
第424行: |
| So this anomalous dimension in the conformal field theory is the same as a particular critical exponent of the Ising model phase transition. | | So this anomalous dimension in the conformal field theory is the same as a particular critical exponent of the Ising model phase transition. |
| | | |
− | 因此,共形场论中的这个反常维度与伊辛模型相变的一个特定临界指数维度是相同的。
| + | 因此,共形场论中的这个异常维数与伊辛模型相变的特定临界指数是相同的。 |
| | | |
| Note that for dimension {{math|''D'' ≡ 4−''ε''}}, {{mvar|η}} can be calculated approximately, using the '''epsilon expansion''', and one finds that | | Note that for dimension {{math|''D'' ≡ 4−''ε''}}, {{mvar|η}} can be calculated approximately, using the '''epsilon expansion''', and one finds that |
| :<math>\eta=\frac{\epsilon^2}{54}+O(\epsilon^3)</math>. | | :<math>\eta=\frac{\epsilon^2}{54}+O(\epsilon^3)</math>. |
| | | |
− | Note that for dimension , can be calculated approximately, using the epsilon expansion, and one finds that
| + | 对于维度{{math|''D'' ≡ 4−''ε''}},可以使用epsilon展开式近似地计算{{mvar|η}},并且可以发现: |
− | :\eta=\frac{\epsilon^2}{54}+O(\epsilon^3).
| |
| | | |
− | 注意,对于维度,可以使用 epsilon 展开式近似地计算,并且可以发现: eta = frac { epsilon ^ 2}{54} + o (epsilon ^ 3)。
| + | <math>\eta=\frac{\epsilon^2}{54}+O(\epsilon^3)</math>。 |
| | | |
| In the physically interesting case of three spatial dimensions, we have {{mvar|ε}}=1, and so this expansion is not strictly reliable. However, a semi-quantitative prediction is that {{mvar|η}} is numerically small in three dimensions. | | In the physically interesting case of three spatial dimensions, we have {{mvar|ε}}=1, and so this expansion is not strictly reliable. However, a semi-quantitative prediction is that {{mvar|η}} is numerically small in three dimensions. |
| | | |
− | In the physically interesting case of three spatial dimensions, we have =1, and so this expansion is not strictly reliable. However, a semi-quantitative prediction is that is numerically small in three dimensions.
| + | 在物理上很有趣的三维空间情况下,我们有{{mvar|ε}}=1,因此这种膨胀并不严格可靠。然而,半定量的预测是η在三维上的数值很小。 |
− | | |
− | 在物理上有趣的三维空间情况下,我们有 = 1,因此这种扩展严格来说是不可靠的。然而,半定量预测在三维空间中数值较小。
| |
| | | |
| On the other hand, in the two-dimensional case the Ising model is exactly soluble. In particular, it is equivalent to one of the [[Minimal model (physics)|minimal models]], a family of well-understood CFTs, and it is possible to compute {{mvar|η}} (and the other critical exponents) exactly, | | On the other hand, in the two-dimensional case the Ising model is exactly soluble. In particular, it is equivalent to one of the [[Minimal model (physics)|minimal models]], a family of well-understood CFTs, and it is possible to compute {{mvar|η}} (and the other critical exponents) exactly, |
| :<math>\eta_{_{D=2}}=\frac{1}{4}</math>. | | :<math>\eta_{_{D=2}}=\frac{1}{4}</math>. |
| | | |
− | On the other hand, in the two-dimensional case the Ising model is exactly soluble. In particular, it is equivalent to one of the minimal models, a family of well-understood CFTs, and it is possible to compute (and the other critical exponents) exactly,
| + | 另一方面,在二维情况下,伊辛模型是完全可解的。特别地,它等价于'''Minimal Model 最小模型'''之一,即一组很好理解的共形场论,并且可以精确地计算η(和其他临界指数), |
− | :\eta_{_{D=2}}=\frac{1}{4}.
| |
| | | |
− | 另一方面,在二维情况下,伊辛模型是完全可解的。特别地,它等价于一个极小模型,一个很好理解的 CFTs 族,并且可以精确地计算(和其他临界指数) : eta _ { _ { d = 2} = frac {1}{4}。
| + | <math>\eta_{_{D=2}}=\frac{1}{4}</math> |
| | | |
| ===Schramm–Loewner evolution=== | | ===Schramm–Loewner evolution=== |