更改

跳到导航 跳到搜索
添加1字节 、 2021年9月1日 (三) 21:41
无编辑摘要
第160行: 第160行:  
The Tweedie convergence theorem provides a hypothetical explanation for the wide manifestation of fluctuation scaling and 1/f noise. It requires, in essence, that any exponential dispersion model that asymptotically manifests a variance to mean power law will be required express a variance function that comes within the domain of attraction of a Tweedie model.  Almost all distribution functions with finite cumulant generating functions qualify as exponential dispersion models and most exponential dispersion models manifest variance functions of this form.  Hence many probability distributions have variance functions that express this asymptotic behavior, and  the Tweedie distributions become foci of convergence for a wide range of data types.
 
The Tweedie convergence theorem provides a hypothetical explanation for the wide manifestation of fluctuation scaling and 1/f noise. It requires, in essence, that any exponential dispersion model that asymptotically manifests a variance to mean power law will be required express a variance function that comes within the domain of attraction of a Tweedie model.  Almost all distribution functions with finite cumulant generating functions qualify as exponential dispersion models and most exponential dispersion models manifest variance functions of this form.  Hence many probability distributions have variance functions that express this asymptotic behavior, and  the Tweedie distributions become foci of convergence for a wide range of data types.
   −
'''Tweedie Convergence Theorem Tweedie收敛定理'''为涨落标度和1/f噪声的广泛出现提供了一个假设性解释。本质上,它要求任何一个可以渐近地显示方差-均值幂律的指数弥散模型,需要在Tweedie模型的吸引域内表达一个方差函数。几乎所有具有有限累积母函数的分布函数都符合指数弥散模型,而大多数指数弥散模型都表现出这种形式的方差函数。因此,许多概率分布都有表达这种渐近行为的方差函数,而Tweedie分布成为了不同数据类型收敛的焦点。
+
'''Tweedie Convergence Theorem Tweedie 收敛定理'''为涨落标度和1/f噪声的广泛出现提供了一个假设性解释。本质上,它要求任何一个可以渐近地显示方差-均值幂律的指数弥散模型,需要在Tweedie模型的吸引域内表达一个方差函数。几乎所有具有有限累积母函数的分布函数都符合指数弥散模型,而大多数指数弥散模型都表现出这种形式的方差函数。因此,许多概率分布都有表达这种渐近行为的方差函数,而Tweedie分布成为了不同数据类型收敛的焦点。
    
Much as the [[central limit theorem]] requires certain kinds of random variables to have as a focus of convergence the [[normal distribution|Gaussian distribution]] and express [[white noise]], the Tweedie convergence theorem requires certain non-Gaussian random variables to express ''1/f'' noise and fluctuation scaling.<ref name="Kendal2011" />
 
Much as the [[central limit theorem]] requires certain kinds of random variables to have as a focus of convergence the [[normal distribution|Gaussian distribution]] and express [[white noise]], the Tweedie convergence theorem requires certain non-Gaussian random variables to express ''1/f'' noise and fluctuation scaling.<ref name="Kendal2011" />
596

个编辑

导航菜单