更改

跳到导航 跳到搜索
删除716字节 、 2021年9月15日 (三) 20:16
无编辑摘要
第74行: 第74行:  
A compact topological space X is self-similar if there exists a finite set S indexing a set of non-surjective homeomorphisms <math>\{ f_s : s\in S \}</math> for which
 
A compact topological space X is self-similar if there exists a finite set S indexing a set of non-surjective homeomorphisms <math>\{ f_s : s\in S \}</math> for which
   −
紧致拓扑空间 x 是自相似的,如果存在一个有限集 s s / math 中的一组非满射同胚数学进行索引
+
如果存在一个有限集 ''S'' 对<math>\{ f_s : s\in S \}</math>中的一组非满射同胚集进行索引,则紧致拓扑空间 ''X'' 是自相似的,有:
 
  −
 
  −
 
  −
:<math>X=\bigcup_{s\in S} f_s(X)</math>
      
<math>X=\bigcup_{s\in S} f_s(X)</math>
 
<math>X=\bigcup_{s\in S} f_s(X)</math>
  −
S } f (x) / math 中的数学 x 大杯
  −
  −
      
If <math>X\subset Y</math>, we call ''X'' self-similar if it is the only [[Non-empty set|non-empty]] [[subset]] of ''Y'' such that the equation above holds for <math>\{ f_s : s\in S \} </math>. We call
 
If <math>X\subset Y</math>, we call ''X'' self-similar if it is the only [[Non-empty set|non-empty]] [[subset]] of ''Y'' such that the equation above holds for <math>\{ f_s : s\in S \} </math>. We call
   −
If <math>X\subset Y</math>, we call X self-similar if it is the only non-empty subset of Y such that the equation above holds for <math>\{ f_s : s\in S \} </math>. We call
+
假设有
   −
如果数学 x 子集 y / math,我们称 x 自相似,如果它是 y 的唯一非空子集,使得上面的方程适用于数学 s: s / math。我们打电话
+
<math>X\subset Y</math>,
    +
当且仅当X是Y的唯一非空子集,使得上式对
    +
<math>\{ f_s : s\in S \} </math>
   −
:<math>\mathfrak{L}=(X,S,\{ f_s : s\in S \} )</math>
+
成立,则X是自相似的。而且我们称
    
<math>\mathfrak{L}=(X,S,\{ f_s : s\in S \} )</math>
 
<math>\mathfrak{L}=(X,S,\{ f_s : s\in S \} )</math>
   −
Math  mathfrak { l }(x,s,f s: s  in s) / math
+
是自相似结构。
 
  −
 
      
a ''self-similar structure''. The homeomorphisms may be [[iterated function|iterated]], resulting in an [[iterated function system]]. The composition of functions creates the algebraic structure of a [[monoid]]. When the set ''S'' has only two elements, the monoid is known as the [[dyadic monoid]]. The dyadic monoid can be visualized as an infinite [[binary tree]]; more generally, if the set ''S'' has ''p'' elements, then the monoid may be represented as a [[p-adic number|p-adic]] tree.
 
a ''self-similar structure''. The homeomorphisms may be [[iterated function|iterated]], resulting in an [[iterated function system]]. The composition of functions creates the algebraic structure of a [[monoid]]. When the set ''S'' has only two elements, the monoid is known as the [[dyadic monoid]]. The dyadic monoid can be visualized as an infinite [[binary tree]]; more generally, if the set ''S'' has ''p'' elements, then the monoid may be represented as a [[p-adic number|p-adic]] tree.
  −
a self-similar structure. The homeomorphisms may be iterated, resulting in an iterated function system. The composition of functions creates the algebraic structure of a monoid. When the set S has only two elements, the monoid is known as the dyadic monoid. The dyadic monoid can be visualized as an infinite binary tree; more generally, if the set S has p elements, then the monoid may be represented as a p-adic tree.
      
一个自相似的结构。同胚可以迭代,产生迭代函数系统。函数的组合创建了 monoid 的代数结构。当集合 s 只有两个元素时,这个幺半群称为二元幺半群。二元幺半群可以被视为一棵无限的二叉树,更一般地说,如果集合 s 有 p 个元素,那么幺半群可以被表示为一棵 p-adic 树。
 
一个自相似的结构。同胚可以迭代,产生迭代函数系统。函数的组合创建了 monoid 的代数结构。当集合 s 只有两个元素时,这个幺半群称为二元幺半群。二元幺半群可以被视为一棵无限的二叉树,更一般地说,如果集合 s 有 p 个元素,那么幺半群可以被表示为一棵 p-adic 树。
  −
      
The [[automorphism]]s of the dyadic monoid is the [[modular group]]; the automorphisms can be pictured as [[Hyperbolic coordinates|hyperbolic rotation]]s of the binary tree.
 
The [[automorphism]]s of the dyadic monoid is the [[modular group]]; the automorphisms can be pictured as [[Hyperbolic coordinates|hyperbolic rotation]]s of the binary tree.
第115行: 第103行:     
二元幺半群的自同构是模群,自同构可以描述为二叉树的双曲旋转。
 
二元幺半群的自同构是模群,自同构可以描述为二叉树的双曲旋转。
  −
      
A more general notion than self-similarity is [[Self-affinity]].
 
A more general notion than self-similarity is [[Self-affinity]].
596

个编辑

导航菜单