{{cite journal | author = Hoffmann, H. | year = 2018 | title = Impact of Network Topology on Self-Organized Criticality | journal = Phys. Rev. E | volume = 97 | pages =022313 | pmid = 29548239 | doi = 10.1103/PhysRevE.97.022313
{{cite journal | author = Hoffmann, H. | year = 2018 | title = Impact of Network Topology on Self-Organized Criticality | journal = Phys. Rev. E | volume = 97 | pages =022313 | pmid = 29548239 | doi = 10.1103/PhysRevE.97.022313
| issue = 2 | bibcode =2018PhRvE..97b2313H | doi-access = free }}</ref>一个自组织临界的连续模型是通过使用热带几何来提出的。<ref>{{Cite journal|last=Kalinin|first=N.|last2=Guzmán-Sáenz|first2=A.|last3=Prieto|first3=Y.|last4=Shkolnikov|first4=M.|last5=Kalinina|first5=V.|last6=Lupercio|first6=E.|date=2018-08-15|title=Self-organized criticality and pattern emergence through the lens of tropical geometry|journal=Proceedings of the National Academy of Sciences|volume=115|issue=35|language=en|pages=E8135–E8142|doi=10.1073/pnas.1805847115|issn=0027-8424|pmid=30111541|pmc=6126730|arxiv=1806.09153}}</ref>
| issue = 2 | bibcode =2018PhRvE..97b2313H | doi-access = free }}</ref>一个自组织临界的连续模型是通过使用热带几何来提出的。<ref>{{Cite journal|last=Kalinin|first=N.|last2=Guzmán-Sáenz|first2=A.|last3=Prieto|first3=Y.|last4=Shkolnikov|first4=M.|last5=Kalinina|first5=V.|last6=Lupercio|first6=E.|date=2018-08-15|title=Self-organized criticality and pattern emergence through the lens of tropical geometry|journal=Proceedings of the National Academy of Sciences|volume=115|issue=35|language=en|pages=E8135–E8142|doi=10.1073/pnas.1805847115|issn=0027-8424|pmid=30111541|pmc=6126730|arxiv=1806.09153}}</ref>