更改

跳到导航 跳到搜索
添加1,054字节 、 2021年10月21日 (四) 16:17
全文初步审校
第1行: 第1行: −
此词条暂由彩云小译翻译,翻译字数共2778,未经人工整理和审校,带来阅读不便,请见谅。
+
此词条暂由彩云小译翻译,翻译字数共2778,由潮升阶审校。
    
{{Use dmy dates|date=July 2013}}
 
{{Use dmy dates|date=July 2013}}
第141行: 第141行:  
DNA and other macromolecules determine an organism's life cycle: birth, growth, maturity, decline, and death. Nutrition is necessary but not sufficient to account for growth in size, as [[genetics]] is the governing factor. At some point, virtually all organisms normally decline and die even while remaining in environments that contain sufficient nutrients to sustain life. The controlling factor must be internal and not nutrients or sunlight acting as causal exogenous variables. Organisms inherit the ability to create unique and complex biological structures; it is unlikely for those capabilities to be reinvented or to be taught to each generation. Therefore, DNA must be operative as the prime cause in this characteristic as well. Applying Boltzmann's perspective of the second law, the change of state from a more probable, less ordered, and higher entropy arrangement to one of less probability, more order, and lower entropy (as is seen in biological ordering) calls for a function like that known of DNA. DNA's apparent information-processing function provides a resolution of the Schrödinger paradox posed by life and the entropy requirement of the second law.<ref name=":7">Peterson, Jacob. "Understanding the Thermodynamics of Biological Order". ''The American Biology Teacher'', 74, Number 1, January 2012, pp. 22–24.</ref>
 
DNA and other macromolecules determine an organism's life cycle: birth, growth, maturity, decline, and death. Nutrition is necessary but not sufficient to account for growth in size, as [[genetics]] is the governing factor. At some point, virtually all organisms normally decline and die even while remaining in environments that contain sufficient nutrients to sustain life. The controlling factor must be internal and not nutrients or sunlight acting as causal exogenous variables. Organisms inherit the ability to create unique and complex biological structures; it is unlikely for those capabilities to be reinvented or to be taught to each generation. Therefore, DNA must be operative as the prime cause in this characteristic as well. Applying Boltzmann's perspective of the second law, the change of state from a more probable, less ordered, and higher entropy arrangement to one of less probability, more order, and lower entropy (as is seen in biological ordering) calls for a function like that known of DNA. DNA's apparent information-processing function provides a resolution of the Schrödinger paradox posed by life and the entropy requirement of the second law.<ref name=":7">Peterson, Jacob. "Understanding the Thermodynamics of Biological Order". ''The American Biology Teacher'', 74, Number 1, January 2012, pp. 22–24.</ref>
   −
DNA 和其他大分子决定了有机体的生命周期: 出生、成长、成熟、衰退和死亡。营养对于生命体体型的增长是必要的,但不足以解释全部,因为基因是其主导因素。在某种程度上,即使它们仍然生活在含有足够维持生命的营养物质的环境中,几乎所有的生物也通常都会衰退或死亡。而这一过程的控制因素是内在的,外界的营养或阳光并不能视作是因变量。有机体继承了创造独特而复杂的生物结构的能力,而这样的能力不太可能被重新发明或者被教授给每一代。因而,DNA作为这一特性的主要原因而发挥作用。从玻尔兹曼(Boltzmann)关于热力学第二定律的观点来看,状态从更可能、更无序和更高熵的排列转变为更少概率、更有序和更低熵的排列(正如在生物排序中看到的那样) ,需要一个像 DNA 那样的函数。DNA 的表观信息处理功能为解决薛定谔悖论提供了方案,而它正是从生命和热力学第二定律的熵的角度而提出的<ref name=":7" />。
+
DNA 和其他大分子决定了有机体的生命周期: 出生、成长、成熟、衰退和死亡。营养对于生命体体型的增长是必要的,但不足以解释全部,因为基因是其主导因素。在某种程度上,即使它们仍然生活在含有足够维持生命的营养物质的环境中,几乎所有的生物也通常都会衰退或死亡。而这一过程的控制因素是内在的,外界的营养或阳光并不能视作是因变量。有机体继承了创造独特而复杂的生物结构的能力,而这样的能力不太可能被重新发明或者被教授给每一代。因而,DNA作为这一特性的主要原因而发挥作用。从玻尔兹曼关于热力学第二定律的观点来看,状态从更可能、更无序和更高熵的排列转变为更少概率、更有序和更低熵的排列(正如在生物排序中看到的那样) ,需要一个像 DNA 那样的函数。DNA 的表观信息处理功能为解决薛定谔悖论提供了方案,而该悖论正是从生命和热力学第二定律的熵的角度而提出的<ref name=":7" />。
   −
==Gibbs free energy and biological evolution==
+
==吉布斯自由能与生物进化==
    
In recent years, the thermodynamic interpretation of evolution in relation to entropy has begun to utilize the concept of the [[Gibbs free energy]], rather than entropy.<ref name=":8">{{Cite book| last= Moroz |first= Adam |title= The Common Extremalities in Biology and Physics |publisher= Elsevier |year= 2012 |isbn= 978-0-12-385187-1}}</ref><ref name="Higgs.P">Higgs, P. G., & Pudritz, R. E. (2009). "A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code" [http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0904.0402 Accepted for publication in Astrobiology]</ref> This is because biological processes on Earth take place at roughly constant temperature and pressure, a situation in which the Gibbs free energy is an especially useful way to express the second law of thermodynamics. The Gibbs free energy is given by:
 
In recent years, the thermodynamic interpretation of evolution in relation to entropy has begun to utilize the concept of the [[Gibbs free energy]], rather than entropy.<ref name=":8">{{Cite book| last= Moroz |first= Adam |title= The Common Extremalities in Biology and Physics |publisher= Elsevier |year= 2012 |isbn= 978-0-12-385187-1}}</ref><ref name="Higgs.P">Higgs, P. G., & Pudritz, R. E. (2009). "A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code" [http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0904.0402 Accepted for publication in Astrobiology]</ref> This is because biological processes on Earth take place at roughly constant temperature and pressure, a situation in which the Gibbs free energy is an especially useful way to express the second law of thermodynamics. The Gibbs free energy is given by:
   −
近年来,发展后的有关熵的热力学解释已经开始利用吉布斯自由能的概念,而不是熵<ref name=":8" /><ref name="Higgs.P" /> 。这是因为地球上的生物过程是在大致恒定的温度和压力下发生的,在这种情况下,吉布斯自由能是来表达热力学第二定律的一种特别有用的形式。吉布斯自由能的表示形式是:
+
近年来,进化论中有关熵的热力学解释已经开始使用吉布斯自由能的概念,而不是熵<ref name=":8" /><ref name="Higgs.P" /> 。这是因为地球上的生物过程是在大致恒定的温度和压力下发生的,在这种情况下,吉布斯自由能是来表达热力学第二定律的一种特别有用的形式。吉布斯自由能的表示形式是:
      第184行: 第184行:       −
The minimization of the Gibbs free energy is a form of the [[principle of minimum energy]], which follows from the [[entropy maximization principle]] for closed systems. Moreover, the Gibbs free energy equation, in modified form, can be utilized for [[open system (systems theory)|open systems]] when [[chemical potential]] terms are included in the energy balance equation. In a popular 1982 textbook, ''Principles of Biochemistry'', noted American biochemist [[Albert L. Lehninger|Albert Lehninger]] argued that the order produced within cells as they grow and divide is more than compensated for by the disorder they create in their surroundings in the course of growth and division. In short, according to Lehninger, "Living organisms preserve their internal order by taking from their surroundings [[Thermodynamic free energy|free energy]], in the form of nutrients or sunlight, and returning to their surroundings an equal amount of energy as heat and entropy."<ref>{{Cite book | last = Lehninger | first = Albert | title = Principles of Biochemistry, 2nd Ed. | publisher = Worth Publishers | year = 1993 | isbn = 978-0-87901-711-8 | url-access = registration | url = https://archive.org/details/isbn_9780879017118 }}</ref>
+
The minimization of the Gibbs free energy is a form of the [[principle of minimum energy]], which follows from the [[entropy maximization principle]] for closed systems. Moreover, the Gibbs free energy equation, in modified form, can be utilized for [[open system (systems theory)|open systems]] when [[chemical potential]] terms are included in the energy balance equation. In a popular 1982 textbook, ''Principles of Biochemistry'', noted American biochemist [[Albert L. Lehninger|Albert Lehninger]] argued that the order produced within cells as they grow and divide is more than compensated for by the disorder they create in their surroundings in the course of growth and division. In short, according to Lehninger, "Living organisms preserve their internal order by taking from their surroundings [[Thermodynamic free energy|free energy]], in the form of nutrients or sunlight, and returning to their surroundings an equal amount of energy as heat and entropy."<ref name=":9">{{Cite book | last = Lehninger | first = Albert | title = Principles of Biochemistry, 2nd Ed. | publisher = Worth Publishers | year = 1993 | isbn = 978-0-87901-711-8 | url-access = registration | url = https://archive.org/details/isbn_9780879017118 }}</ref>
   −
吉布斯自由能最小化是最小能量原理的一种形式,它遵循封闭系统的熵最大化原理。此外,当能量平衡方程中包含化学势项时,修正的吉布斯自由能方程可用于开放体系。美国著名生物化学家阿尔伯特 · 莱宁格在1982年出版的一本颇受欢迎的教科书《生物化学原理》中指出,细胞在生长和分裂过程中所产生的秩序,远远超过了它们在生长和分裂过程中在周围环境中所产生的紊乱所能补偿的程度。简而言之,根据 Lehninger 的说法,“生物体通过从周围环境中获取营养或阳光等形式的自由能量,并以热量和熵等量的能量返回周围环境,从而保持其内部秩序。”
+
吉布斯自由能最小化是最小能量原理的一种形式,它遵循封闭系统的熵最大化原理。此外,当能量平衡方程中包含化学势时,修正的吉布斯自由能方程可适用于开放系统。美国著名生物化学家阿尔伯特 · 莱宁格(Albert Lehninger)在1982年出版的一本颇受欢迎的教科书《生物化学原理》中指出,细胞在生长和分裂过程中所产生的秩序,远远超过了它们在生长和分裂过程中在周围环境中所产生的混乱所能补偿的程度。简而言之,根据莱宁格的说法,“生物体通过从周围环境中获取营养或阳光等形式的自由量,并向周围环境返回与热量和熵等量的能量,从而保持其内部秩序<ref name=":9" />。”
   −
::
     −
Similarly, according to the chemist [[John Scales Avery|John Avery]], from his 2003 book ''Information Theory and Evolution'', we find a presentation in which the phenomenon of life, including its origin and evolution, as well as human cultural evolution, has its basis in the background of [[thermodynamics]], [[statistical mechanics]], and [[information theory]]. The (apparent) paradox between the second law of thermodynamics and the high degree of order and complexity produced by living systems, according to Avery, has its resolution "in the information content of the Gibbs free energy that enters the biosphere from outside sources."<ref>{{Cite book| last = Avery | first = John  | title = Information Theory and Evolution | publisher = World Scientific | year = 2003 | isbn = 978-981-238-399-0}}</ref> Assuming evolution drives organisms towards higher information content, it is postulated by [[Gregory Chaitin]] that life has properties of high mutual information<ref>{{Cite news| last = Chaitin | first = Gregory  | title = Towards a mathematical definition of Life | publisher = MIT press | pages = 477–498 | year = 1979 | url = http://home.thep.lu.se/~henrik/mnxa09/Chaitin1979.pdf}}</ref>, and by Tamvakis that life can be quantified using mutual information density metrics, a generalisation of the concept of [[Biodiversity]]. <ref>{{Cite news| last = Tamvakis | first = Ioannis  | title = Quantifying life | year = 2018 | url = https://www.researchgate.net/publication/336878361}}</ref>
     −
同样,根据化学家 John Avery 在他2003年出版的《信息论和进化论》一书中的说法,我们发现生命现象,包括其起源和进化,以及人类文化进化,都有其热力学、统计力学和信息论的背景。根据 Avery 的说法,热力学第二定律和生命系统产生的高度有序和复杂性之间的(明显的)悖论在“从外部来源进入生物圈的吉布斯自由能的信息含量”中得到了解决假设进化驱使生物体向着更高的信息含量发展,Gregory Chaitin 假设生命具有高度互信息的特性,Tamvakis 假设生命可以使用互信息密度度量来量化,这是生物多样性概念的一个概括。
+
Similarly, according to the chemist [[John Scales Avery|John Avery]], from his 2003 book ''Information Theory and Evolution'', we find a presentation in which the phenomenon of life, including its origin and evolution, as well as human cultural evolution, has its basis in the background of [[thermodynamics]], [[statistical mechanics]], and [[information theory]]. The (apparent) paradox between the second law of thermodynamics and the high degree of order and complexity produced by living systems, according to Avery, has its resolution "in the information content of the Gibbs free energy that enters the biosphere from outside sources."<ref name=":10">{{Cite book| last = Avery | first = John  | title = Information Theory and Evolution | publisher = World Scientific | year = 2003 | isbn = 978-981-238-399-0}}</ref> Assuming evolution drives organisms towards higher information content, it is postulated by [[Gregory Chaitin]] that life has properties of high mutual information<ref name=":11">{{Cite news| last = Chaitin | first = Gregory  | title = Towards a mathematical definition of Life | publisher = MIT press | pages = 477–498 | year = 1979 | url = http://home.thep.lu.se/~henrik/mnxa09/Chaitin1979.pdf}}</ref>, and by Tamvakis that life can be quantified using mutual information density metrics, a generalisation of the concept of [[Biodiversity]]. <ref name=":12">{{Cite news| last = Tamvakis | first = Ioannis  | title = Quantifying life | year = 2018 | url = https://www.researchgate.net/publication/336878361}}</ref>
    +
类似地,根据化学家约翰·艾弗里(John Avery)在他2003年出版的《信息论和进化论》一书中的说法,任何生命现象,包括其起源和进化,以及人类文化进化,都有其热力学、统计力学和信息论的背景作为基础。根据艾弗里的说法,热力学第二定律和生命系统产生的高度有序和复杂性之间明显的悖论在“从外界进入生物圈的吉布斯自由能的信息量”中得到了解决<ref name=":10" /> 。格里高利·蔡廷(Gregory Chaitin) 假设生命具有高度信息交互的特性<ref name=":11" />,Tamvakis 假设生命可以使用互信息密度度量来量化(这是生物多样性概念的一个概括)<ref name=":12" />,进化驱使生物体向着更高的信息量发展。
         −
In a study titled "Natural selection for least action" published in the ''Proceedings of the Royal Society A.'', Ville Kaila and Arto Annila of the [[University of Helsinki]] describe how the process of [[natural selection]] responsible for such local increase in order may be mathematically derived directly from the expression of the second law equation for connected non-equilibrium open systems. The second law of thermodynamics can be written as an equation of motion to describe evolution, showing how natural selection and the principle of least action can be connected by expressing natural selection in terms of chemical thermodynamics. In this view, evolution explores possible paths to level differences in energy densities and so increase entropy most rapidly. Thus, an organism serves as an energy transfer mechanism, and beneficial mutations allow successive organisms to transfer more energy within their environment.<ref name="evo2lot">{{cite web|url=http://www.physorg.com/news137679868.html|title=Evolution as Described by the Second Law of Thermodynamics|author=Lisa Zyga|date=11 August 2008|publisher=Physorg.com|accessdate=2008-08-14}}</ref><ref>{{Cite journal|doi=10.1098/rspa.2008.0178 |title=Natural selection for least action |author1=Kaila, V. R.  |author2=Annila, A.|journal=Proceedings of the Royal Society A |date=8 November 2008 |volume=464 |issue=2099 |pages=3055–3070|bibcode = 2008RSPSA.464.3055K |doi-access=free }}</ref>
     −
在《皇家学会报告志上发表的一篇题为《最小行动的自然选择》的研究中,赫尔辛基大学的 Ville Kaila 和 Arto Annila 描述了如何从连接的非平衡开放系统的第二定律方程式的表达式直接从数学上推导出导致这种局部增长的自然选择过程。热力学第二定律可以被写成一个描述进化的运动方程,通过用化学热力学来表述自然选择和最小行动原则是如何联系在一起的。在这种观点中,进化探索了能量密度水平差异的可能途径,从而最快速地增加熵。因此,有机体充当能量传递机制,有益突变允许后续的有机体在其环境中传递更多的能量。
      +
In a study titled "Natural selection for least action" published in the ''Proceedings of the Royal Society A.'', Ville Kaila and Arto Annila of the [[University of Helsinki]] describe how the process of [[natural selection]] responsible for such local increase in order may be mathematically derived directly from the expression of the second law equation for connected non-equilibrium open systems. The second law of thermodynamics can be written as an equation of motion to describe evolution, showing how natural selection and the principle of least action can be connected by expressing natural selection in terms of chemical thermodynamics. In this view, evolution explores possible paths to level differences in energy densities and so increase entropy most rapidly. Thus, an organism serves as an energy transfer mechanism, and beneficial mutations allow successive organisms to transfer more energy within their environment.<ref name="evo2lot">{{cite web|url=http://www.physorg.com/news137679868.html|title=Evolution as Described by the Second Law of Thermodynamics|author=Lisa Zyga|date=11 August 2008|publisher=Physorg.com|accessdate=2008-08-14}}</ref><ref name=":13">{{Cite journal|doi=10.1098/rspa.2008.0178 |title=Natural selection for least action |author1=Kaila, V. R.  |author2=Annila, A.|journal=Proceedings of the Royal Society A |date=8 November 2008 |volume=464 |issue=2099 |pages=3055–3070|bibcode = 2008RSPSA.464.3055K |doi-access=free }}</ref>
    +
在皇家学会学报上发表的一篇题为《最小行动的自然选择》的研究中,赫尔辛基大学的 Ville Kaila 和 Arto Annila 描述了如何从连通的非平衡开放系统的热力学第二定律方程式的表达式上,直接从数学上推导出导致这种局部增长的自然选择过程。热力学第二定律可以被写成一个描述进化的运动方程,在化学热力学方面来表述自然选择和最小行动原则是如何联系在一起的。在这种观点中,生物在进化过程中探索了能量密度差异的可能途径,从而最快速地增加熵。其中,有机体起着能量传递机制的作用,有益突变允许后代有机体在其环境中传递更多的能量<ref name="evo2lot" /><ref name=":13" />。
            −
The second law of thermodynamics applied to the [[origin of life]] is a far more complicated issue than the further development of life, since there is no "standard model" of how the first biological lifeforms emerged, only a number of competing hypotheses. The problem is discussed within the context of [[abiogenesis]], implying gradual pre-Darwinian chemical evolution. In 1924, [[Alexander Oparin]] suggested that sufficient energy for generating early lifeforms from non-living molecules was provided in a "primordial soup". The Belgian scientist [[Ilya Prigogine]] was awarded with a Nobel Prize in 1977 for an analysis in this area. A related topic is the probability that life would emerge, which has been discussed in several studies, for example by [[Russell Doolittle]].<ref>Russell Doolittle, "The Probability and Origin of Life" in ''Scientists Confront Creationism'' (1984) Ed. Laurie R. Godfrey, p. 85</ref>
     −
应用于生命起源的热力学第二定律是一个比生命进一步发展更复杂的问题,因为对于第一个生物体是如何出现的没有“标准模型” ,只有一些相互竞争的假设。这个问题是在自然发生的背景下讨论的,意味着达尔文之前的化学进化是渐进的。1924年,亚历山大·伊万诺维奇·奥巴林提出,从无生命的分子中产生早期生命形式所需的足够能量来自于“原始汤”。1977年,比利时科学家伊利亚 · 普里戈金因在这一领域的分析而获得诺贝尔奖。一个相关的话题是生命出现的可能性,这已经在一些研究中讨论过了,比如罗素 · 杜立特尔的研究。
         +
==熵和生命的起源==
    +
The second law of thermodynamics applied to the [[origin of life]] is a far more complicated issue than the further development of life, since there is no "standard model" of how the first biological lifeforms emerged, only a number of competing hypotheses. The problem is discussed within the context of [[abiogenesis]], implying gradual pre-Darwinian chemical evolution. In 1924, [[Alexander Oparin]] suggested that sufficient energy for generating early lifeforms from non-living molecules was provided in a "primordial soup". The Belgian scientist [[Ilya Prigogine]] was awarded with a Nobel Prize in 1977 for an analysis in this area. A related topic is the probability that life would emerge, which has been discussed in several studies, for example by [[Russell Doolittle]].<ref name=":14">Russell Doolittle, "The Probability and Origin of Life" in ''Scientists Confront Creationism'' (1984) Ed. Laurie R. Godfrey, p. 85</ref>
   −
In 2009, physicist Karo Michaelian published a thermodynamic dissipation theory for the origin of life <ref name=":0">{{Cite journal|last=Michaelian|first=Karo|title=Thermodynamic Origin of Life|year=2009|doi=10.5194/esd-2-37-2011|url=https://arxiv.org/abs/0907.0042|url-status=live|archive-url=|archive-date=|access-date=|arxiv=0907.0042|s2cid=14574109}}</ref><ref name=":1">{{Cite journal|last=Michaelian|first=K.|date=2011-03-11|title=Thermodynamic dissipation theory for the origin of life|url=https://esd.copernicus.org/articles/2/37/2011/|journal=Earth System Dynamics|language=English|volume=2|issue=1|pages=37–51|doi=10.5194/esd-2-37-2011|s2cid=14574109|issn=2190-4979}}</ref> in which the fundamental molecules of life; nucleic acids, amino acids, carbohydrates (sugars), and lipids are considered to have been originally produced as microscopic dissipative structures (through Prigogine's dissipative structuring <ref>{{Cite book|last=Prigogine, I. (Ilya)|url=http://worldcat.org/oclc/1171126768|title=Introduction to thermodynamics of irreversible processes|date=1967|publisher=Interscience|oclc=1171126768}}</ref>) as pigments at the ocean surface to absorb and dissipate into heat the UVC flux of solar light arriving at Earth's surface during the Archean, just as do organic pigments in the visible region today. These UVC pigments were formed through photochemical dissipative structuring from more common and simpler precursor molecules like HCN and H<sub>2</sub>O under the UVC flux of solar light <ref name=":0" /><ref name=":1" /><ref>{{Cite journal|last=Michaelian|first=Karo|date=2017-08-22|title=Microscopic Dissipative Structuring at the Origin of Life|url=http://dx.doi.org/10.1101/179382|access-date=2020-10-05|website=dx.doi.org|doi=10.1101/179382|s2cid=12239645}}</ref>.The thermodynamic function of the original pigments (fundamental molecules of life) was to increase the entropy production of the incipient biosphere under the solar photon flux and this, in fact, remains as the most important thermodynamic function of the biosphere today, but now mainly in the visible region where photon intensities are higher and biosynthetic pathways are more complex, allowing pigments to be synthesized from lower energy visible light instead of UVC light which no longer reaches Earth's surface.
+
热力学第二定律应用于生命的起源是一个比生命的发展演化更复杂的问题,因为对于第一个生物体是如何出现的没有“标准模型” ,只有一些争论不休的假设。这个问题是在自然发生的背景下讨论的,意味着在达尔文之前,化学进化被认为是渐进的。1924年,亚历山大·伊万诺维奇·奥巴林(Alexander Oparin) 提出,从无生命的分子中产生早期生命形式所需的足够能量来自于“原始汤”。1977年,比利时科学家伊利亚 · 普里戈金(Ilya Prigogine)因对这一领域的研究而获得诺贝尔奖。另一个相关的话题是生命出现的可能性,这已经在一些研究中讨论过了,比如罗素 · 杜立特尔(Russell Doolittle)的研究<ref name=":14" />
   −
2009年,物理学家 Karo Michaelian 发表了关于生命起源的热力学耗散理论,其中生命的基本分子,核酸、氨基酸、碳水化合物(糖)和脂类最初被认为是作为微观耗散结构(通过 Prigogine 的耗散结构)在海洋表面作为色素产生的,以吸收太古代期间到达地球表面的太阳光 UVC 通量,并将其转化为热量,就像今天可见区域的有机色素一样。这些 UVC 颜料是在太阳光的 UVC 通量作用下,由较常见和较简单的前体分子 HCN 和 h < sub > 2  o 形成的光化学耗散结构。原始色素(生命的基本分子)的热力学功能是在太阳光子通量下增加初始生物圈的产生熵,事实上,这仍然是生物圈今天最重要的热力学功能,但现在主要是在可见光区域,那里光子强度更高,生物合成途径更复杂,允许色素从低能量的可见光而不是不再到达地球表面的 UVC 光合成。
     −
==Entropy and the origin of life==
+
 
 +
 
 +
 
 +
In 2009, physicist Karo Michaelian published a thermodynamic dissipation theory for the origin of life <ref name=":0">{{Cite journal|last=Michaelian|first=Karo|title=Thermodynamic Origin of Life|year=2009|doi=10.5194/esd-2-37-2011|url=https://arxiv.org/abs/0907.0042|url-status=live|archive-url=|archive-date=|access-date=|arxiv=0907.0042|s2cid=14574109}}</ref><ref name=":1">{{Cite journal|last=Michaelian|first=K.|date=2011-03-11|title=Thermodynamic dissipation theory for the origin of life|url=https://esd.copernicus.org/articles/2/37/2011/|journal=Earth System Dynamics|language=English|volume=2|issue=1|pages=37–51|doi=10.5194/esd-2-37-2011|s2cid=14574109|issn=2190-4979}}</ref> in which the fundamental molecules of life; nucleic acids, amino acids, carbohydrates (sugars), and lipids are considered to have been originally produced as microscopic dissipative structures (through Prigogine's dissipative structuring <ref name=":15">{{Cite book|last=Prigogine, I. (Ilya)|url=http://worldcat.org/oclc/1171126768|title=Introduction to thermodynamics of irreversible processes|date=1967|publisher=Interscience|oclc=1171126768}}</ref>) as pigments at the ocean surface to absorb and dissipate into heat the UVC flux of solar light arriving at Earth's surface during the Archean, just as do organic pigments in the visible region today. These UVC pigments were formed through photochemical dissipative structuring from more common and simpler precursor molecules like HCN and H<sub>2</sub>O under the UVC flux of solar light <ref name=":0" /><ref name=":1" /><ref name=":16">{{Cite journal|last=Michaelian|first=Karo|date=2017-08-22|title=Microscopic Dissipative Structuring at the Origin of Life|url=http://dx.doi.org/10.1101/179382|access-date=2020-10-05|website=dx.doi.org|doi=10.1101/179382|s2cid=12239645}}</ref>.The thermodynamic function of the original pigments (fundamental molecules of life) was to increase the entropy production of the incipient biosphere under the solar photon flux and this, in fact, remains as the most important thermodynamic function of the biosphere today, but now mainly in the visible region where photon intensities are higher and biosynthetic pathways are more complex, allowing pigments to be synthesized from lower energy visible light instead of UVC light which no longer reaches Earth's surface.
 +
 
 +
2009年,物理学家卡罗 · 麦克里安(Karo Michaelian) 发表了关于生命起源的热力学耗散理论 <ref name=":0" /><ref name=":1" /> ,其中生命的基本分子,核酸、氨基酸、碳水化合物(糖)和脂类最初被认为是在海洋表面产生的类似色素的某种微观耗散结构(如普里戈金耗散结构 <ref name=":15" />),它们吸收太古代期间到达地球表面的太阳光紫外线通量,并将其散发为热量,其外表看起来就像有机色素一样。这些分子在太阳光的紫外线的作用下,由较常见和较简单的分子(如HCN 和 H<sub>2</sub>O)形成光化学耗散结构 <ref name=":0" /><ref name=":1" /><ref name=":16" />。此时原始色素(即生命的基本分子)的热力学功能是在太阳辐射下增加初期生物圈的熵,事实上,这仍然是生物圈今天最重要的热力学功能,但现在主要是在可见光区域,那里辐射强度更高,化合物合成途径更复杂,允许色素利用低能量的可见光而不仅限于到达地球表面的紫外线合成化合物。
            −
In 1964, [[James Lovelock]] was among a group of scientists requested by [[NASA]] to make a theoretical life-detection system to look for [[life on Mars (planet)|life on Mars]] during the upcoming space mission. When thinking about this problem, Lovelock wondered “how can we be sure that Martian life, if any, will reveal itself to tests based on Earth’s lifestyle?”<ref name="gaia">{{Cite book| last = Lovelock | first = James | title = GAIA – A New Look at Life on Earth | publisher = Oxford University Press | year = 1979 | isbn = 978-0-19-286218-1}}</ref> To Lovelock, the basic question was “What is life, and how should it be recognized?” When speaking about this issue with some of his colleagues at the [[Jet Propulsion Laboratory]], he was asked what he would do to look for life on Mars. To this, Lovelock replied "I’d look for an entropy reduction, since this must be a general characteristic of life."<ref name="gaia" />
     −
1964年,詹姆斯 · 洛夫洛克(James Lovelock)和其他一些科学家应美国航空航天局(NASA)的要求,建立了一个理论上的生命探测系统,以便在即将到来的太空任务中寻找火星上的生命。当思考这个问题时,洛夫洛克想知道“我们怎么能确定火星生命,如果有的话,会在基于地球生活方式的测试中显露出来呢? ”对洛夫洛克来说,最基本的问题是“什么是生命,以及如何识别生命? ”当他与喷气推进实验室的一些同事讨论这个问题时,有人问他如何在火星上寻找生命。对此,洛夫洛克回答说: “我会寻找熵减法,因为这一定是生命的一般特征。”
         +
==熵和寻找地外生命==
    +
In 1964, [[James Lovelock]] was among a group of scientists requested by [[NASA]] to make a theoretical life-detection system to look for [[life on Mars (planet)|life on Mars]] during the upcoming space mission. When thinking about this problem, Lovelock wondered “how can we be sure that Martian life, if any, will reveal itself to tests based on Earth’s lifestyle?”<ref name="gaia">{{Cite book| last = Lovelock | first = James | title = GAIA – A New Look at Life on Earth | publisher = Oxford University Press | year = 1979 | isbn = 978-0-19-286218-1}}</ref> To Lovelock, the basic question was “What is life, and how should it be recognized?” When speaking about this issue with some of his colleagues at the [[Jet Propulsion Laboratory]], he was asked what he would do to look for life on Mars. To this, Lovelock replied "I’d look for an entropy reduction, since this must be a general characteristic of life."<ref name="gaia" />
   −
==Entropy and the search for extraterrestrial life==
+
1964年,詹姆斯 · 洛夫洛克(James Lovelock)和其他一些科学家应美国航空航天局(NASA)的要求,建立了一个理论上的生命探测系统,以便在即将到来的太空任务中寻找火星上的生命。当思考这个问题时,洛夫洛克想知道“我们怎么能确定火星生命的存在,如果有的话,它会怎样在基于地球生活环境的测试中显露出来呢<ref name="gaia" />?  ”对洛夫洛克来说,最基本的问题是“什么是生命,以及如何识别生命? ”当他与喷气动力实验室的一些同事讨论这个问题时,就有人这样问他。对此,洛夫洛克回答说: “我会寻找熵减少的地方,因为这一定是生命的一般特征<ref name="gaia" />。”
   −
The notion of entropy as disorder has been transferred from thermodynamics to [[psychology]] by Polish [[psychiatrist]] [[Antoni Kępiński]], who admitted being inspired by Erwin Schrödinger.<ref name="kepinski1972c">{{cite book|last1=Kępiński|first1=Antoni|title=Rhythm of life (in Polish)|date=1972|publisher=Wydawnictwo Literackie|location=Kraków}}</ref> In his theoretical framework devised to explain [[mental disorder]]s (the [[information metabolism]] theory), the difference between living organisms and other systems was explained as the ability to maintain order. Contrary to inanimate matter, organisms maintain the particular order of their bodily structures and inner worlds which they impose onto their surroundings and forward to new generations. The life of an organism or the [[species]] ceases as soon as it loses that ability.<ref name="pietrak2018">{{cite journal|last1=Pietrak|first1=Karol|title=The foundations of socionics - a review.|journal=Cognitive Systems Research|volume=47|year=2018|pages=1–11|doi=10.1016/J.COGSYS.2017.07.001|s2cid=34672774}}</ref> Maintenance of that order requires continual exchange of information between the organism and its surroundings. In higher organisms, information is acquired mainly through [[sensory neuron|sensory receptors]] and metabolised in the [[nervous system]]. The result is action – some form of [[motion (physics)|motion]], for example [[animal locomotion|locomotion]], [[speech]], internal motion of organs, secretion of [[hormone]]s, etc. The reactions of one organism become an informational signal to other organisms. [[Information metabolism]], which allows living systems to maintain the order, is possible only if a hierarchy of value exists, as the signals coming to the organism must be structured. In humans that hierarchy has three levels, i.e. biological, emotional, and sociocultural.<ref name="schochow2016"> {{cite journal|last1=Schochow|first1=Maximilian|last2=Steger|first2=Florian|title=Antoni Kepiński (1918–1972), pioneer of post-traumatic stress disorder|journal=The British Journal of Psychiatry|volume=208|issue=6|year=2016|pages=590|doi=10.1192/bjp.bp.115.168237|pmid=27251694|doi-access=free}}</ref> Kępiński explained how various mental disorders are caused by distortions of that hierarchy, and that the return to mental health is possible through its restoration.<ref name="bulaczek2013">{{cite journal|last1=Bulaczek|first1=Aleksandra|title=Relations patient – doctor in axiological psychiatry of Antoni Kępiński (in Polish)|journal=Studia Ecologiae et Bioethicae UKSW|date=2013|volume=11|issue=2|pages=9–28|doi=10.21697/seb.2013.11.2.01|url=http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-37c5d3a1-9ee9-49e4-b9d1-287df1ef3a58/c/tom_11_2_1_aleksandra_bulaczek_relacje_pacjent_lekarz_w_psychiatrii_aksjologicznej_antoniego_kepinskiego.pdf}}</ref>
     −
熵作为无序的概念已经由波兰精神病学家 Antoni k pi ski 从热力学转移到心理学,他承认受到了埃尔温·薛定谔的启发。在他为解释精神障碍而设计的理论框架(信息代谢理论)中,生物体和其他系统的区别被解释为维持秩序的能力。与无生命物质相反,有机体维持着它们的身体结构和内部世界的特定秩序,这些秩序和秩序强加于它们的周围环境并传递给下一代。有机体或物种的生命一旦失去这种能力就会停止。维持这种秩序需要生物体与其周围环境之间不断地交换信息。在高等生物体中,信息主要通过感觉受体获得,并在神经系统中进行代谢。其结果是行动——某种形式的运动,例如运动、说话、器官的内部运动、激素的分泌等等。一个有机体的反应成为其他有机体的信号。信息新陈代谢允许生命系统维持秩序,只有在价值存在层次结构的情况下才有可能,因为到达生物体的信号必须是有结构的。在人类中,等级有三个层次,即。生理,情感和社会文化。解释了各种各样的精神障碍是如何被扭曲的等级制度所引起的,并且通过恢复精神健康是可能的。
+
In 2013, Azua-Bustos and Vega argued that, disregarding the types of lifeforms that might be envisioned both on Earth and elsewhere in the Universe, all should share in common the attribute of decreasing their internal entropy at the expense of free energy obtained from their surroundings. As entropy allows the quantification of the degree of disorder in a system, any envisioned lifeform must have a higher degree of order than its immediate supporting environment. These authors showed that by using fractal mathematics analysis alone, they could readily quantify the degree of structural complexity difference (and thus entropy) of living processes as distinct entities separate from their similar abiotic surroundings. This approach may allow the future detection of unknown forms of life both in the Solar System and on recently discovered exoplanets based on nothing more than entropy differentials of complementary datasets (morphology, coloration, temperature, pH, isotopic composition, etc.).<ref name=":17">{{Cite journal|last1=Vega-Martínez|first1=Cristian|last2=Azua-Bustos|first2=Armando|date=2013|title=The potential for detecting 'life as we don't know it' by fractal complexity analysis|journal=International Journal of Astrobiology|language=en|volume=12|issue=4|pages=314–320|doi=10.1017/S1473550413000177|issn=1475-3006|hdl=10533/131814|hdl-access=free}}</ref>
    +
2013年,Azua-Bustos和Vega认为,抛开地球上和宇宙其他地方可能存在的生命形式,所有生命都应该有一个共同的属性,即以消耗从周围环境获得的自由能为代价,来减少它们的内部熵。由于熵允许对系统的无序程度进行量化,任何想象中的生命形式都必须比它的生活环境有更高的有序程度。这些人认为,仅通过使用分形数学分析,他们可以很容易地量化生命过程的结构复杂性以及与其独立但相似的非生物环境的差异(即熵的不同)。这种方法可以让我们在未来仅根据不同的数据集(如形态、颜色、温度、pH值、同位素组成等数据集)的熵差,就能在太阳系和最近发现的系外行星上发现未知的生命形式<ref name=":17" />。
    +
==心理学中的熵==
    +
The notion of entropy as disorder has been transferred from thermodynamics to [[psychology]] by Polish [[psychiatrist]] [[Antoni Kępiński]], who admitted being inspired by Erwin Schrödinger.<ref name="kepinski1972c">{{cite book|last1=Kępiński|first1=Antoni|title=Rhythm of life (in Polish)|date=1972|publisher=Wydawnictwo Literackie|location=Kraków}}</ref> In his theoretical framework devised to explain [[mental disorder]]s (the [[information metabolism]] theory), the difference between living organisms and other systems was explained as the ability to maintain order. Contrary to inanimate matter, organisms maintain the particular order of their bodily structures and inner worlds which they impose onto their surroundings and forward to new generations. The life of an organism or the [[species]] ceases as soon as it loses that ability.<ref name="pietrak2018">{{cite journal|last1=Pietrak|first1=Karol|title=The foundations of socionics - a review.|journal=Cognitive Systems Research|volume=47|year=2018|pages=1–11|doi=10.1016/J.COGSYS.2017.07.001|s2cid=34672774}}</ref> Maintenance of that order requires continual exchange of information between the organism and its surroundings. In higher organisms, information is acquired mainly through [[sensory neuron|sensory receptors]] and metabolised in the [[nervous system]]. The result is action – some form of [[motion (physics)|motion]], for example [[animal locomotion|locomotion]], [[speech]], internal motion of organs, secretion of [[hormone]]s, etc. The reactions of one organism become an informational signal to other organisms. [[Information metabolism]], which allows living systems to maintain the order, is possible only if a hierarchy of value exists, as the signals coming to the organism must be structured. In humans that hierarchy has three levels, i.e. biological, emotional, and sociocultural.<ref name="schochow2016"> {{cite journal|last1=Schochow|first1=Maximilian|last2=Steger|first2=Florian|title=Antoni Kepiński (1918–1972), pioneer of post-traumatic stress disorder|journal=The British Journal of Psychiatry|volume=208|issue=6|year=2016|pages=590|doi=10.1192/bjp.bp.115.168237|pmid=27251694|doi-access=free}}</ref> Kępiński explained how various mental disorders are caused by distortions of that hierarchy, and that the return to mental health is possible through its restoration.<ref name="bulaczek2013">{{cite journal|last1=Bulaczek|first1=Aleksandra|title=Relations patient – doctor in axiological psychiatry of Antoni Kępiński (in Polish)|journal=Studia Ecologiae et Bioethicae UKSW|date=2013|volume=11|issue=2|pages=9–28|doi=10.21697/seb.2013.11.2.01|url=http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-37c5d3a1-9ee9-49e4-b9d1-287df1ef3a58/c/tom_11_2_1_aleksandra_bulaczek_relacje_pacjent_lekarz_w_psychiatrii_aksjologicznej_antoniego_kepinskiego.pdf}}</ref>
   −
The idea was continued by Struzik, who proposed that Kępiński's information metabolism theory may be seen as an extension of [[Léon Brillouin]]'s [[Negentropy#Brillouin's_negentropy_principle_of_information|negentropy principle of information]].<ref name="struzik1987">{{cite journal|last1=Struzik|first1=Tadeusz|title=Kepiński's Information Metabolism, Carnot's Principle and Information Theory|journal=International Journal of Neuroscience|date=1987|volume=36|issue=1–2|pages=105–111|doi=10.3109/00207458709002144|pmid=3654085}}</ref> In 2011, the notion of "psychological entropy" was reintroduced to psychologists by Hirsh et al.<ref name="hirsh2012">{{cite journal|last1=Hirsh|first1=Jacob B.|last2=Mar|first2=Raymond A.|last3=Peterson|first3=Jordan B.|title=Psychological Entropy: A Framework for Understanding Uncertainty-Related Anxiety|journal=Psychological Review|volume=119|date=2012|issue=Advance online publication|pages=304–320|doi=10.1037/a0026767|url=https://www.researchgate.net/publication/221752816|pmid=22250757}}</ref> Similarly to Kępiński, these authors noted that [[uncertainty]] management is a critical ability for any organism. Uncertainty, arising due to the conflict between competing [[perception|perceptual]] and [[behavior|behavioral]] [[affordance|affordances]], is experienced subjectively as [[anxiety]]. Hirsh and his collaborators proposed that both the perceptual and behavioral domains may be conceptualized as [[probability distribution|probability distributions]] and that the amount of uncertainty associated with a given perceptual or behavioral experience can be quantified in terms of [[Entropy (information theory)|Claude Shannon’s entropy formula]].
+
受到了埃尔温·薛定谔的启发,熵作为无序的概念已经由波兰精神病学家 Antoni Kępiński从热力学应用于心理学<ref name="kepinski1972c" /> 。在他为解释精神障碍而提出的理论框架(信息代谢理论)中,生命体和其他系统的区别在于维持秩序的能力。与无生命物质相反,有机体维持着它们的身体结构和内部世界的特定秩序,并且这些秩序强加于它们的周围环境并传递给下一代。有机体或物种的生命一旦失去这种能力就会死亡<ref name="pietrak2018" /> ,而维持这种秩序需要生物体与其周围环境之间不断地交换信息。在高等生命体中,信息主要通过感觉受体获得,并在神经系统中进行代谢,其结果是行动——即某种形式的运动,例如运动、说话、器官的内部运动、激素的分泌等等,这意味着一个有机体的反应成为给其他有机体的信号。只有存在层次结构的情况下,信息新陈代谢允许生命系统维持秩序才成为可能,因为到达生物体的信号必须是有结构的。在人类身上存在三个结构层次,即生理,情感和社会文化<ref name="schochow2016" />。Kępiński 解释了各种各样的精神障碍是如何被扭曲的结构层次所引起的,并且通过治疗恢复精神健康是可能的。
   −
这个想法得到了 strutzik 的继续,他提出,k pi ski 的信息代谢理论可以看作是 l é on Brillouin 的信息负熵原理的延伸。2011年,Hirsh 等人重新向心理学家提出了“心理熵”的概念。与 kpi ski 类似,这些作者指出,不确定性管理对任何有机体来说都是一种至关重要的能力。不确定性是由于知觉和行为的负担之间的冲突而产生的,主观上被体验为焦虑。赫什和他的合作者提出,知觉和行为域可以概念化为概率分布,与给定的知觉或行为经验相关的不确定性的数量可以用克劳德香农的熵公式来量化。
        −
In 2013, Azua-Bustos and Vega argued that, disregarding the types of lifeforms that might be envisioned both on Earth and elsewhere in the Universe, all should share in common the attribute of decreasing their internal entropy at the expense of free energy obtained from their surroundings. As entropy allows the quantification of the degree of disorder in a system, any envisioned lifeform must have a higher degree of order than its immediate supporting environment. These authors showed that by using fractal mathematics analysis alone, they could readily quantify the degree of structural complexity difference (and thus entropy) of living processes as distinct entities separate from their similar abiotic surroundings. This approach may allow the future detection of unknown forms of life both in the Solar System and on recently discovered exoplanets based on nothing more than entropy differentials of complementary datasets (morphology, coloration, temperature, pH, isotopic composition, etc.).<ref>{{Cite journal|last1=Vega-Martínez|first1=Cristian|last2=Azua-Bustos|first2=Armando|date=2013|title=The potential for detecting 'life as we don't know it' by fractal complexity analysis|journal=International Journal of Astrobiology|language=en|volume=12|issue=4|pages=314–320|doi=10.1017/S1473550413000177|issn=1475-3006|hdl=10533/131814|hdl-access=free}}</ref>
     −
2013年,Azua-Bustos和Vega认为,抛开地球上和宇宙其他地方可能存在的生命形式,所有生命都应该有一个共同的属性,即以牺牲从周围环境获得的自由能为代价,来减少它们的内部熵。由于熵允许对系统的无序程度进行量化,任何想象中的生命形式都必须比它的直接支持环境有更高的有序程度。这些作者表明,仅使用分形数学分析,他们可以很容易地量化结构的复杂程度
     −
==Entropy in psychology==
+
The idea was continued by Struzik, who proposed that Kępiński's information metabolism theory may be seen as an extension of [[Léon Brillouin]]'s [[Negentropy#Brillouin's_negentropy_principle_of_information|negentropy principle of information]].<ref name="struzik1987">{{cite journal|last1=Struzik|first1=Tadeusz|title=Kepiński's Information Metabolism, Carnot's Principle and Information Theory|journal=International Journal of Neuroscience|date=1987|volume=36|issue=1–2|pages=105–111|doi=10.3109/00207458709002144|pmid=3654085}}</ref> In 2011, the notion of "psychological entropy" was reintroduced to psychologists by Hirsh et al.<ref name="hirsh2012">{{cite journal|last1=Hirsh|first1=Jacob B.|last2=Mar|first2=Raymond A.|last3=Peterson|first3=Jordan B.|title=Psychological Entropy: A Framework for Understanding Uncertainty-Related Anxiety|journal=Psychological Review|volume=119|date=2012|issue=Advance online publication|pages=304–320|doi=10.1037/a0026767|url=https://www.researchgate.net/publication/221752816|pmid=22250757}}</ref> Similarly to Kępiński, these authors noted that [[uncertainty]] management is a critical ability for any organism. Uncertainty, arising due to the conflict between competing [[perception|perceptual]] and [[behavior|behavioral]] [[affordance|affordances]], is experienced subjectively as [[anxiety]]. Hirsh and his collaborators proposed that both the perceptual and behavioral domains may be conceptualized as [[probability distribution|probability distributions]] and that the amount of uncertainty associated with a given perceptual or behavioral experience can be quantified in terms of [[Entropy (information theory)|Claude Shannon’s entropy formula]].
     −
Entropy is well defined for equilibrium systems, so objections to the extension of the second law and of entropy to biological systems, especially as it pertains to its use to support or discredit the theory of evolution, have been stated.<ref>Callen, Herbert B (1985). Thermodynamics and an Introduction to Statistical Thermodynamics. John Wiley and Sons.</ref><ref>Ben-Naim, Arieh (2012). Entropy and the Second Law. World Scientific Publishing.</ref> Living systems and indeed many other systems and processes in the universe operate far from equilibrium, whereas the second law succinctly states that isolated systems evolve toward thermodynamic equilibrium — the state of maximum entropy.
+
这个想法得到了 strutzik 的继续发展,他提出, Kępiński 的信息代谢理论可以看作是Léon Brillouin的信息负熵原理的延伸。2011年,赫什(Hirsh)等人重新向心理学家引入了“心理熵”的概念<ref name="hirsh2012" /> 。与Kępiński类似,他们指出,对不确定性的管理对任何有机体来说都是一种至关重要的能力。不确定性是由于竞争和行为负担之间的冲突而产生的,主观上被体验为焦虑。赫什和他的合作者提出,知觉和行为可以概念化为概率分布,给定的知觉或行为经验相关的不确定性可以用克劳德·香农(Claude Shannon)的熵公式来量化。
   −
对于平衡系统来说,熵是一个很好的定义,因此反对将第二定律和熵扩展到生物系统,特别是因为它涉及到用来支持或否定进化理论,已经陈述了。生命系统和宇宙中的许多其他系统和过程都远离平衡状态,而第二定律简洁地指出,孤立的系统会朝着热力学平衡---- 熵最大的状态---- 演化。
        第261行: 第261行:       −
==Objections==
+
==反对意见==
    
{{expand section|date=December 2015}}
 
{{expand section|date=December 2015}}
 +
 +
Entropy is well defined for equilibrium systems, so objections to the extension of the second law and of entropy to biological systems, especially as it pertains to its use to support or discredit the theory of evolution, have been stated.<ref name=":18">Callen, Herbert B (1985). Thermodynamics and an Introduction to Statistical Thermodynamics. John Wiley and Sons.</ref><ref name=":19">Ben-Naim, Arieh (2012). Entropy and the Second Law. World Scientific Publishing.</ref> Living systems and indeed many other systems and processes in the universe operate far from equilibrium, whereas the second law succinctly states that isolated systems evolve toward thermodynamic equilibrium — the state of maximum entropy.
 +
 +
对于平衡系统来说,熵是一个很好的定义。反对意见集中于将热力学第二定律和熵扩展到生物系统,特别是因为它涉及到用来支持或否定进化理论<ref name=":18" /><ref name=":19" /> 。生命系统和宇宙中的许多其他系统和过程都远离平衡状态,而热力学第二定律简洁地指出,孤立的系统会朝着热力学平衡,即熵最大的状态演化。
       
However, entropy is well defined much more broadly based on the [[Entropy (information theory)|probabilities]] of a system's states, whether or not the system is a dynamic one (for which equilibrium could be relevant). Even in those physical systems where equilibrium could be relevant, (1) living systems cannot persist in isolation, and (2) the second principle of thermodynamics does not require that free energy be transformed into entropy along the shortest path: living organisms absorb energy from sunlight or from energy-rich chemical compounds and finally return part of such energy to the environment as entropy (generally in the form of heat and low free-energy compounds such as water and carbon dioxide).
 
However, entropy is well defined much more broadly based on the [[Entropy (information theory)|probabilities]] of a system's states, whether or not the system is a dynamic one (for which equilibrium could be relevant). Even in those physical systems where equilibrium could be relevant, (1) living systems cannot persist in isolation, and (2) the second principle of thermodynamics does not require that free energy be transformed into entropy along the shortest path: living organisms absorb energy from sunlight or from energy-rich chemical compounds and finally return part of such energy to the environment as entropy (generally in the form of heat and low free-energy compounds such as water and carbon dioxide).
   −
然而,熵的定义更广泛地基于系统状态的概率,不管系统是否是一个动态的系统(平衡可能是相关的)。即使在那些可能与平衡相关的物理系统中,(1)生命系统也不能孤立地存在,(2)热力学第二原理并不要求沿着最短的路径将自由能转化为熵: 生命有机体从阳光或高能化合物中吸收能量,最终将这种能量的一部分以熵的形式返回到环境中(通常是以热和水和二氧化碳等低自由能化合物的形式)。
+
然而,熵的定义更普遍地基于系统状态的概率,不管系统是否是一个动态的系统(平衡可能是相关的)。而即使在那些可能与平衡相关的物理系统中,(1)生命系统也不能孤立地存在,(2)热力学第二原理并不要求沿着最短的路径将自由能转化为熵。有机生命体从阳光或高能化合物中吸收能量,最终将这种能量的一部分以熵的形式返回到环境中(通常是以热和水和二氧化碳等低自由能化合物的形式)。
    
==See also==
 
==See also==
46

个编辑

导航菜单