更改

跳到导航 跳到搜索
删除638字节 、 2021年10月31日 (日) 17:09
无编辑摘要
第11行: 第11行:  
'''量子计算'''有几种模型,包括'''量子电路模型、量子图灵机、绝热量子计算机、单向量子计算机和各种量子细胞自动机'''。使用最广泛的模型基于“量子比特”或“量子位 qubit”的'''量子电路模型 Quantum circuits '''。它在某种程度上类似于经典计算中的“比特”。一个量子比特可以处于1或0的量子态,或者处于1和0的叠加态。然而,当'''量子比特'''被测量时,测量结果只能是0或1; 这两种结果发生的概率取决于量子比特在被测量之前所处的量子状态。计算是通过'''量子逻辑门 Quantum logic gates'''操纵量子比特来完成的,这在某种程度上类似于经典逻辑门。
 
'''量子计算'''有几种模型,包括'''量子电路模型、量子图灵机、绝热量子计算机、单向量子计算机和各种量子细胞自动机'''。使用最广泛的模型基于“量子比特”或“量子位 qubit”的'''量子电路模型 Quantum circuits '''。它在某种程度上类似于经典计算中的“比特”。一个量子比特可以处于1或0的量子态,或者处于1和0的叠加态。然而,当'''量子比特'''被测量时,测量结果只能是0或1; 这两种结果发生的概率取决于量子比特在被测量之前所处的量子状态。计算是通过'''量子逻辑门 Quantum logic gates'''操纵量子比特来完成的,这在某种程度上类似于经典逻辑门。
   −
  −
Efforts towards building a physical quantum computer focus on technologies such as transmons, ion traps and topological quantum computers, which aim to create high-quality qubits. These qubits may be designed differently, depending on the full quantum computer's computing model, whether quantum logic gates, quantum annealing, or adiabatic quantum computation. There are currently a number of significant obstacles to constructing useful quantum computers. It is particularly difficult to maintain qubits' quantum states, as they suffer from quantum decoherence and state fidelity. Quantum computers therefore require error correction.
      
目前量子计算机的物理实现努力集中在'''transmons、离子阱和拓扑量子计算机'''等技术上,这些技术旨在创造高质量的量子比特。<ref name="2018Report" /> 量子比特的设计方式可能不同,这取决于量子计算机的计算模型,是'''量子逻辑门 quantum logic gates'''、'''量子退火 quantum annealing'''还是'''绝热量子计算 adiabatic quantum computation'''。目前,构建有用的量子计算机还存在一些较大的阻碍。由于受到'''量子退相干 quantum decoherence'''和'''量子态保真度 state fidelity'''的影响,维持量子比特的量子状态尤其困难。因此,量子计算机需要纠错。<ref>{{cite book |doi=10.1007/1-4020-8068-9_8 |chapter=Challenges in Reliable Quantum Computing |title=Nano, Quantum and Molecular Computing |year=2004 |last1=Franklin |first1=Diana |last2=Chong |first2=Frederic T. |pages=247–266 |isbn=1-4020-8067-0 }}</ref><ref>{{cite news |last1=Pakkin |first1=Scott |last2=Coles |first2=Patrick |title=The Problem with Quantum Computers |url=https://blogs.scientificamerican.com/observations/the-problem-with-quantum-computers/ |publisher=Scientific American |date=10 June 2019}}</ref>
 
目前量子计算机的物理实现努力集中在'''transmons、离子阱和拓扑量子计算机'''等技术上,这些技术旨在创造高质量的量子比特。<ref name="2018Report" /> 量子比特的设计方式可能不同,这取决于量子计算机的计算模型,是'''量子逻辑门 quantum logic gates'''、'''量子退火 quantum annealing'''还是'''绝热量子计算 adiabatic quantum computation'''。目前,构建有用的量子计算机还存在一些较大的阻碍。由于受到'''量子退相干 quantum decoherence'''和'''量子态保真度 state fidelity'''的影响,维持量子比特的量子状态尤其困难。因此,量子计算机需要纠错。<ref>{{cite book |doi=10.1007/1-4020-8068-9_8 |chapter=Challenges in Reliable Quantum Computing |title=Nano, Quantum and Molecular Computing |year=2004 |last1=Franklin |first1=Diana |last2=Chong |first2=Frederic T. |pages=247–266 |isbn=1-4020-8067-0 }}</ref><ref>{{cite news |last1=Pakkin |first1=Scott |last2=Coles |first2=Patrick |title=The Problem with Quantum Computers |url=https://blogs.scientificamerican.com/observations/the-problem-with-quantum-computers/ |publisher=Scientific American |date=10 June 2019}}</ref>
7,129

个编辑

导航菜单