更改

跳到导航 跳到搜索
删除22字节 、 2021年10月31日 (日) 21:52
第206行: 第206行:  
对于量子计算机的物理实现,人们正在寻找许多不同的候选方案,其中包括(以实现量子比特的物理系统为区别):
 
对于量子计算机的物理实现,人们正在寻找许多不同的候选方案,其中包括(以实现量子比特的物理系统为区别):
   −
*超导量子计算<ref name="ClarkeWilhelm2008">{{cite journal |last1=Clarke |first1=John |last2=Wilhelm |first2=Frank K. |title=Superconducting quantum bits |journal=Nature |date=18 June 2008 |volume=453 |issue=7198 |pages=1031–1042 |doi=10.1038/nature07128 |pmid=18563154 |bibcode=2008Natur.453.1031C|url=https://www.semanticscholar.org/paper/7ee1053ce63f33a62f2ea555547c514ce5f21054 }}</ref><ref>{{cite journal |last1=Kaminsky |first1=William M. |last2=Lloyd |first2=Seth |last3=Orlando |first3=Terry P. |title=Scalable Superconducting Architecture for Adiabatic Quantum Computation |arxiv=quant-ph/0403090 |date=12 March 2004 |bibcode=2004quant.ph..3090K }}</ref>(由小型超导电路状态实现的量子比特([[约瑟夫森结]])
+
*超导量子计算<ref name="ClarkeWilhelm2008">{{cite journal |last1=Clarke |first1=John |last2=Wilhelm |first2=Frank K. |title=Superconducting quantum bits |journal=Nature |date=18 June 2008 |volume=453 |issue=7198 |pages=1031–1042 |doi=10.1038/nature07128 |pmid=18563154 |bibcode=2008Natur.453.1031C|url=https://www.semanticscholar.org/paper/7ee1053ce63f33a62f2ea555547c514ce5f21054 }}</ref><ref>{{cite journal |last1=Kaminsky |first1=William M. |last2=Lloyd |first2=Seth |last3=Orlando |first3=Terry P. |title=Scalable Superconducting Architecture for Adiabatic Quantum Computation |arxiv=quant-ph/0403090 |date=12 March 2004 |bibcode=2004quant.ph..3090K }}</ref>(由小型超导电路状态实现的量子比特)
 
*束缚离子量子计算机(由束缚离子的内部状态实现的量子比特)
 
*束缚离子量子计算机(由束缚离子的内部状态实现的量子比特)
 
*光学晶格中的中性原子(由被困在光学晶格中的中性原子的内部状态实现的量子比特)<ref>{{Cite journal|last1=Khazali|first1=Mohammadsadegh|last2=Mølmer|first2=Klaus|date=2020-06-11|title=Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits|journal=Physical Review X|volume=10|issue=2|pages=021054|doi=10.1103/PhysRevX.10.021054|bibcode=2020PhRvX..10b1054K|doi-access=free}}</ref><ref>{{Cite journal|last1=Henriet|first1=Loic|last2=Beguin|first2=Lucas|last3=Signoles|first3=Adrien|last4=Lahaye|first4=Thierry|last5=Browaeys|first5=Antoine|last6=Reymond|first6=Georges-Olivier|last7=Jurczak|first7=Christophe|date=2020-06-22|title=Quantum computing with neutral atoms|journal=Quantum|volume=4|page=327|doi=10.22331/q-2020-09-21-327|arxiv=2006.12326}}</ref>
 
*光学晶格中的中性原子(由被困在光学晶格中的中性原子的内部状态实现的量子比特)<ref>{{Cite journal|last1=Khazali|first1=Mohammadsadegh|last2=Mølmer|first2=Klaus|date=2020-06-11|title=Fast Multiqubit Gates by Adiabatic Evolution in Interacting Excited-State Manifolds of Rydberg Atoms and Superconducting Circuits|journal=Physical Review X|volume=10|issue=2|pages=021054|doi=10.1103/PhysRevX.10.021054|bibcode=2020PhRvX..10b1054K|doi-access=free}}</ref><ref>{{Cite journal|last1=Henriet|first1=Loic|last2=Beguin|first2=Lucas|last3=Signoles|first3=Adrien|last4=Lahaye|first4=Thierry|last5=Browaeys|first5=Antoine|last6=Reymond|first6=Georges-Olivier|last7=Jurczak|first7=Christophe|date=2020-06-22|title=Quantum computing with neutral atoms|journal=Quantum|volume=4|page=327|doi=10.22331/q-2020-09-21-327|arxiv=2006.12326}}</ref>
7,129

个编辑

导航菜单