第141行: |
第141行: |
| | | |
| ==历史== | | ==历史== |
− |
| |
− | The gravitational problem of three bodies in its traditional sense dates in substance from 1687, when Isaac Newton published his Principia (Philosophiæ Naturalis Principia Mathematica). In Proposition 66 of Book 1 of the Principia, and its 22 Corollaries, Newton took the first steps in the definition and study of the problem of the movements of three massive bodies subject to their mutually perturbing gravitational attractions. In Propositions 25 to 35 of Book 3, Newton also took the first steps in applying his results of Proposition 66 to the lunar theory, the motion of the Moon under the gravitational influence of the Earth and the Sun.
| |
| | | |
| 传统意义上的三个物体的引力问题可以追溯到1687年,当时 艾萨克·牛顿 Isaac Newton 发表了他的《自然哲学的数学原理》。在《原理》第一卷的第66号提案及其22个推论中,牛顿首次定义和研究了三个受相互扰动的重力吸引影响的巨大物体的运动问题。在第三册的第25至35条命题中,牛顿也迈出了第一步,将他的66号提案的结果应用到月球理论中,即月球在地球和太阳的引力影响下的运动。 | | 传统意义上的三个物体的引力问题可以追溯到1687年,当时 艾萨克·牛顿 Isaac Newton 发表了他的《自然哲学的数学原理》。在《原理》第一卷的第66号提案及其22个推论中,牛顿首次定义和研究了三个受相互扰动的重力吸引影响的巨大物体的运动问题。在第三册的第25至35条命题中,牛顿也迈出了第一步,将他的66号提案的结果应用到月球理论中,即月球在地球和太阳的引力影响下的运动。 |
| | | |
− | The physical problem was addressed by Amerigo Vespucci and subsequently by Galileo Galilei; in 1499, Vespucci used knowledge of the position of the Moon to determine his position in Brazil. It became of technical importance in the 1720s, as an accurate solution would be applicable to navigation, specifically for the determination of longitude at sea, solved in practice by John Harrison's invention of the marine chronometer. However the accuracy of the lunar theory was low, due to the perturbing effect of the Sun and planets on the motion of the Moon around the Earth.
| |
| | | |
| 亚美利哥·韦斯普奇 Amerigo Vespucci和随后的 伽利略·伽利雷 Galileo Galilei提出了三体问题; 1499年,韦斯普奇 Vespucci利用对月球位置的了解来确定自己在巴西的位置。因为这种方法适用于导航,特别是在海上确定经度,1720年代该方法变得非常技术实用。事实上确定经度的问题被 约翰·哈里森 John Harrison发明的航海经线仪所解决。但是,由于太阳和行星对月球绕地球运动的干扰作用,月球理论的准确性很低。 | | 亚美利哥·韦斯普奇 Amerigo Vespucci和随后的 伽利略·伽利雷 Galileo Galilei提出了三体问题; 1499年,韦斯普奇 Vespucci利用对月球位置的了解来确定自己在巴西的位置。因为这种方法适用于导航,特别是在海上确定经度,1720年代该方法变得非常技术实用。事实上确定经度的问题被 约翰·哈里森 John Harrison发明的航海经线仪所解决。但是,由于太阳和行星对月球绕地球运动的干扰作用,月球理论的准确性很低。 |
| | | |
| | | |
− | Jean le Rond d'Alembert and Alexis Clairaut, who developed a longstanding rivalry, both attempted to analyze the problem in some degree of generality; they submitted their competing first analyses to the Académie Royale des Sciences in 1747.[21] It was in connection with their research, in Paris during the 1740s, that the name "three-body problem" (French: Problème des trois Corps) began to be commonly used. An account published in 1761 by Jean le Rond d'Alembert indicates that the name was first used in 1747. | + | 建立了长期竞争关系的 让·勒朗·达朗贝尔 Jean le Rond d'Alembert 和 亚历克西斯·克莱奥特 Alexis Clairaut都试图以某种普遍性来分析该问题。他们于1747年向皇家科学研究院提交了他们的第一批竞争分析。<ref>The 1747 memoirs of both parties can be read in the volume of ''Histoires'' (including ''Mémoires'') of the Académie Royale des Sciences for 1745 (belatedly published in Paris in 1749) (in French): |
− | | + | : Clairaut: "On the System of the World, according to the principles of Universal Gravitation" (at pp. 329–364); and |
− | 建立了长期竞争关系的 让·勒朗·达朗贝尔 Jean le Rond d'Alembert 和 亚历克西斯·克莱奥特 Alexis Clairaut都试图以某种普遍性来分析该问题。他们于1747年向皇家科学研究院提交了他们的第一批竞争分析。在1740年代的巴黎,“三体问题”(法语:Problèmedes trois Corps)这个名字开始被普遍使用,与他们的研究有关。让·勒朗·达朗贝尔 Jean le Rond d'Alembert于1761年发布的文章表明该名称最早于1747年使用。
| + | : d'Alembert: "General method for determining the orbits and the movements of all the planets, taking into account their mutual actions" (at pp. 365–390). |
| + | The peculiar dating is explained by a note printed on page 390 of the "Memoirs" section: "Even though the preceding memoirs, of Messrs. Clairaut and d'Alembert, were only read during the course of 1747, it was judged appropriate to publish them in the volume for this year" (i.e. the volume otherwise dedicated to the proceedings of 1745, but published in 1749).</ref>在1740年代的巴黎,“三体问题”(法语:Problèmedes trois Corps)这个名字开始被普遍使用,与他们的研究有关。让·勒朗·达朗贝尔 Jean le Rond d'Alembert于1761年发布的文章表明该名称最早于1747年使用。<ref>[[Jean le Rond d'Alembert]], in a paper of 1761 reviewing the mathematical history of the problem, mentions that Euler had given a method for integrating a certain differential equation "in 1740 (seven years before there was question of the Problem of Three Bodies)": see d'Alembert, "Opuscules Mathématiques", vol. 2, Paris 1761, Quatorzième Mémoire ("Réflexions sur le Problème des trois Corps, avec de Nouvelles Tables de la Lune ...") pp. 329–312, at sec. VI, p. 245.</ref> |
| | | |
| + | <br> |
| | | |
| ==其他涉及三体的问题== | | ==其他涉及三体的问题== |